
SUNFISH Platform Documentation
Documentation

Release 0.9

SUNFISH Consortium

Nov 06, 2017

Key Concepts

1 Federation-as-a-Service 3
1.1 Operational Phases . 4

2 SUNFISH Platform in a nutshell 5

3 Setting-up a SUNFISH Cloud Federation 7
3.1 Data Security Enforcement Infrastructure . 7

4 SUNFISH Use Case Demonstrator 13

5 API 15
5.1 SUNFISH Policy Administration Point (PAP) API . 15
5.2 SUNFISH Policy Decision Point (PDP) API . 17
5.3 SUNFISH Policy Enforcement Point (PEP) API . 19
5.4 SUNFISH Policy Information Point (PIP) API . 22
5.5 SUNFISH Policy Retrieval Point (PRP) API . 23
5.6 SUNFISH Intelligent Workload Manager (IWM) API . 26

6 Registry Interface 97
6.1 Instructions for Registry Interface Deployment and Development 97

7 Registry 101
7.1 Instructions for deploying chaincode . 101

8 FRM 103
8.1 Instructions for deploying FRM . 103

9 IWM 107
9.1 Overview of Intelligent Workload Manager . 107
9.2 Screenshots . 107
9.3 Instructions for deploying IWM . 110

10 Registry Interface 113

11 Registry 115

i

ii

SUNFISH Platform Documentation Documentation, Release 0.9

The SUNFISH Platform is software platform enabling Federation-as-a-Service (FaaS), a new and innovative Cloud
Federation solution conceived and designed by the EU SUNFISH Project.

Key Concepts 1

SUNFISH Platform Documentation Documentation, Release 0.9

2 Key Concepts

CHAPTER 1

Federation-as-a-Service

This is a page for FaaS

3

SUNFISH Platform Documentation Documentation, Release 0.9

1.1 Operational Phases

4 Chapter 1. Federation-as-a-Service

CHAPTER 2

SUNFISH Platform in a nutshell

This is a page for the SUNFISH Platform

5

SUNFISH Platform Documentation Documentation, Release 0.9

6 Chapter 2. SUNFISH Platform in a nutshell

CHAPTER 3

Setting-up a SUNFISH Cloud Federation

3.1 Data Security Enforcement Infrastructure

The SUNFISH data security enforcement infrastructure is responsible for regulating and securing access to services in
a federated cloud environment.

It consists of the following components:

• The Policy Enforcement Gateway (PEG) responsible for enforcing decision regarding whether access to
a resource is granted or not and which obligations need to be observed (if any). This component serves as
the main entry point to a service protected by the SUNFISH DS enforcement infrastructure.

• An accompanying Proxy enabling the non-SUNFISH-aware applications to utilise the benefits of the SUN-
FISH platform.

• A Policy Decision Point (PDP) evaluating a decision request, indicating whether access to a service should
be granted or not. In addition, Obligations such as data masking, for example can be part of the decision.

• Policy Information Points (PIPs) delivering information to the PEG and the PDP to enhance decision
requests.

• A Policy Administration Point (PAP) providing an interface for administration data security policies.

• The Registry Interface responsible for storing, managing and delivering policies to the PDP for evalua-
tion. Setup an operation of the RI is described separately, since it is operated independently of the other
components.

• A Masking Service providing data masking capabilities to the PEG. Like the RI, the masking service is
operated independently of the other components and therefore also discussed separately.

Typically, the enforcement infrastructure will be deployed among different tenants. The following setup instructions
are based on a minimal example consisting of one infrastructure tenant and a service tenant.

The infrastructure tenant will typically house the PDP, any number of PIPs and the PRP. The service tenant hosts the
actual service to be protected by the enforcement infrastructure as well as the PEG, any number of PIPs and the proxy
to maintain backwards compatibility to non-SUNFISH-aware clients. As outlined initially, the PEG located at the
service tenant serves as the main entry point, responding to incoming requests, which can either be submitted directly

7

SUNFISH Platform Documentation Documentation, Release 0.9

to the PEG, or through the proxy. In case the requests was directed to the proxy, responses are also interpreted by the
proxy and reduced in such a way that non-SUNFISH-aware applications are able to interpret it correctly (albeit losing
expressibility in the process).

In-depth descriptions on how to set up a service tenant and an infrastructure tenant are available. These include
step-by-step instructions to deploy the enforcement infrastructure on existing Java application servers. In addition,
a streamlined, deployment-script-based setup as well as an automated, easy-to-use, self-contained, two-step, docker-
based setup is provided for jump-starting a SUNFISH deployment. The referred scripts and configuration files are
located at https://github.com/sunfish-prj/Data-Security/tree/master/ds/doc/install.
The sub-folder service contains necessary files for the service tenant deployment, the infrastructure folder
for the infrastructure tenant deployment respectively. The docker folder again contains the same structure, but for
the dockerized setup.

3.1.1 Setting-Up a Service Tenant

It is assumed that a service is already running in the service tenant.

Step-By-Step Setup

Although not recommended, the SUNFISH data security enforcement infrastructure can be deployed following the
succeeding steps. However, depending on the deployment use case, additional steps or adaptions to either configuration
or system components may still be necessary. For demonstration purposes a two tenant setup is assumed. The sample
configuration ships with precompiled Tomcat applications, which can be found in the respective webapps directory
of either tenant. Additionally, a sample configuration for the service tenant can be found in the respective conf
directory. To deploy the service tenant follow these steps:

• Copy the content of the provided ./tomcat/webapps directory to CATALINA_HOME/webapps directory

• Copy the content of the provided ./tomcat/conf directory to CATALINA_HOME/conf directory

• Copy the content of the provided ./proxy/ directory to any desired directory (referred to as PROXY_HOME)

In a divergent deployment scenario, the respective configurations of the SUNFISH components and the SUNFISH
proxy need to be adapted individually. To start the SUNFISH data security enforcement infrastructure simply start
your local Tomcat instance and execute the start.sh script, located in your PROXY_HOME directory.

Using the Deployment Script

The attached deployment script is an easy way to automatically setup a service tenant. For this, the following two
steps are necessary:

• Adapt the configuration if necessary (config.sh)

• Execute the deployment script (./deploy.sh)

The deployment script will automatically create all necessary resources and copy them to their designated destination.
No further steps are necessary. To start the SUNFISH data security enforcement infrastructure simply start your local
Tomcat instance and execute the start.sh script, located in your PROXY_HOME directory.

Configuration Directives

The infrastructure tenant features several configuration options before installation. The following parameters are
available:

• TOMCAT_PORT: Defines the port of the local Tomcat instance

8 Chapter 3. Setting-up a SUNFISH Cloud Federation

SUNFISH Platform Documentation Documentation, Release 0.9

• CATALINA_HOME: Defines the home directory of the local Tomcat instance (e.g. (/usr/local/tomcat/)

• PEP_URL_PDP: Defines the URL of the designated PDP for the PEP

• PEP_URLS_PIPS: Defines the possible PIPs available to the PEP. Multiple URLs can be specified, separated
by a comma

• PEP_ZONE: Defines the tenant name the PEP is located in

• PEP_URL_DM: Specifies the URL to the data masking service

• PEP_URL_ANON: Sepcifies the URL to the anonymisation service

• PIP_DATABASE: Defines possible database values for the PIP. Each setting consists of a key and a value. In
general three entries are necessary in order to setup a new service inside the service tenant:

– Host for ID: Assign a hostname to a specific service. The key must be in the format host.
<service_id>. The value represents a single URL to the designated service.

– Tenant for ID: Assign a service to a specific tenant. The key must be in the format zone.
<service_id>. The value defines the tenant the service is located at.

– PEP for Tenant: Assign a PEP to a specific tenant. The key must be in the format pep.<tenant
name>. The value represents a single URL to the designated PEP.

• PROXY_HOME: Defines the home directory of the SUNFISH proxy (e.g. (/usr/local/proxy/)

• PROXY_IP: Defines the IP address the SUNFISH Proxy will run on

• PROXY_PORT: Defines the port the SUNISH Proxy will listen to

• PROXY_PEP[<service_id>]: Defines the URL of the PEP guarding the service <service_id> for the
SUNFISH Proxy. Multiple services can be defined; should match the service IDs in the PIP database.

Dockerised Setup

The docker-based deployment also features a configuration file containing essentially the same (at this point mostly
self-explanatory) directives and a deployment script. This script has to be invoked after editing the configuration file
just as it is the case for the regular deployment-script-based setup.

To actually deploy the docker container, once the configuration file has been adapted, the following steps need to be
performed:

• Download the service docker container (tenant.tar) from the Releases tab in the GitHub repository and
copy it to install/docker/tenant/

• The preconfigured docker container tenant.tar needs to be loaded: docker load -i tenant.tar

• The deployment script has to be executed (./deploy.sh)

This should start a docker container, inside which the proxy is running on PROXY_PORT and the PEG and the PIP
are running as web applications on a Tomcat server on TOMCAT_PORT. Both ports are mapped to their respective
counterparts on the host machine.

Setting-Up a Service

To add a new service to the SUNFISH data security enforcement infrastructure, the following steps are necessary:

• Add a host for the service id to the configuration file config.sh or, if the SUNFISH tenant has already
been setup, to the configuration file located in CATALINA_HOME/conf/sunfish/pip/database/
pip_database.config

3.1. Data Security Enforcement Infrastructure 9

SUNFISH Platform Documentation Documentation, Release 0.9

• Add a tenant for the service id to the configuration file config.sh or, if the SUNFISH tenant has al-
ready been setup, to the configuration file located in CATALINA_HOME/conf/sunfish/pip/database/
pip_database.config. It is important to note that this step needs to be performed for all operational
tenants, as long as the PIP database containing the service configuration is not replicated between all tenants.

• Add a pep for the tenant of the service to the configuration file config.sh or, if the SUNFISH tenant has al-
ready been setup, to the configuration file located in CATALINA_HOME/conf/sunfish/pip/database/
pip_database.config. It is important to note that this step needs to be performed for all operational
tenants, as long as the PIP database containing the service configuration is not replicated between all tenants.

• Restart your local Service Tenant Tomcat in order to apply the changes

Adding Policies

By default, any deployed service requires dedicated policies in order for the SUNFISH data security enforcement
infrastructure to work. Policies can be added via the PAP and the defined API (see also Chapter SUNFISH Policy
Administration Point (PAP) API). A sample policy, allowing access to a defined service is shown below:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<Policy xmlns="urn:oasis:names:tc:xacml:3.0:core:schema:wd-17" xmlns:ns2="urn:sunfish
→˓" PolicyId="urn:sunfish:policy:demo-proxy-https" Version="1.0" RuleCombiningAlgId=
→˓"urn:oasis:names:tc:xacml:1.0:rule-combining-algorithm:deny-overrides">

<Description>Demo Permit-All Policy </Description>
<Target>

<AnyOf>
<AllOf>

<Match MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
<AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string

→˓">129.27.142.49</AttributeValue>
<AttributeDesignator Category="urn:sunfish:attribute-

→˓category:service" AttributeId="urn:sunfish:attribute:id" DataType="http://www.w3.
→˓org/2001/XMLSchema#string" MustBePresent="true"/>

</Match>
<Match MatchId="urn:oasis:names:tc:xacml:3.0:function:string-starts-

→˓with">
<AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string

→˓">/demo-app/demo/</AttributeValue>
<AttributeDesignator Category="urn:sunfish:attribute-

→˓category:response" AttributeId="urn:sunfish:attribute:request:path" DataType="http:/
→˓/www.w3.org/2001/XMLSchema#string" MustBePresent="false"/>

</Match>
</AllOf>
<AllOf>

<Match MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
<AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string

→˓">129.27.142.49</AttributeValue>
<AttributeDesignator Category="urn:sunfish:attribute-

→˓category:service" AttributeId="urn:sunfish:attribute:id" DataType="http://www.w3.
→˓org/2001/XMLSchema#string" MustBePresent="true"/>

</Match>
<Match MatchId="urn:oasis:names:tc:xacml:3.0:function:string-starts-

→˓with">
<AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string

→˓">/demo-app/demo/</AttributeValue>
<AttributeDesignator Category="urn:sunfish:attribute-

→˓category:request" AttributeId="urn:sunfish:attribute:request:path" DataType="http://
→˓www.w3.org/2001/XMLSchema#string" MustBePresent="false"/>

</Match>

10 Chapter 3. Setting-up a SUNFISH Cloud Federation

SUNFISH Platform Documentation Documentation, Release 0.9

</AllOf>
</AnyOf>

</Target>
<Rule RuleId="urn:sunfish:rule:permit" Effect="Permit">

<Target/>
</Rule>

</Policy>

3.1.2 Setting-Up an Infrastructure Tenant

Step-By-Step Setup

Although not recommended, the SUNFISH data security enforcement infrastructure can be deployed following the
succeeding steps. However, depending on the deployment use case, additional steps or adaptions to either configuration
or system components may still be necessary. For demonstration purposes a two tenant setup is assumed. The sample
configuration ships with precompiled Tomcat applications, which can be found in the respective webapps directory
of either tenant. Additionally, a sample configuration for the infrastructure tenant can be found in the respective conf
directory. To deploy the service tenant follow these steps:

• Copy the content of the provided webapps directory to CATALINA_HOME/webapps directory

• Copy the content of the provided conf directory to CATALINA_HOME/conf directory

In a divergent deployment scenario, the respective configurations of the SUNFISH components need to be adapted
individually. To start the SUNFISH data security enforcement infrastructure simply start your local Tomcat instance.

Using the Deployment Script

The attached deployment script is an easy way to automatically setup an infrastructure tenant. For this, the following
two steps are necessary:

• Adapt the configuration if necessary (config.sh)

• Execute the deployment script (./deploy.sh)

The deployment script will automatically create all necessary resources and copy them to their designated destination.
No further steps are necessary. To start the SUNFISH data security enforcement infrastructure simply start your local
Tomcat instance.

Configuration Directives

The infrastructure tenant features several configuration options before installation. The following parameters are
available:

• TOMCAT_PORT: Defines the port of the local Tomcat instance

• CATALINA_HOME: Defines the home directory of the local Tomcat instance (e.g. (/usr/local/tomcat/)

• PAP_URL_RI: Defines the URL of the designated Registry Interface for the PAP

• PDP_URLS_PRPS: Defines the possible PRPs available to the PDP. Multiple URLs can be specified, separated
by a comma

• PDP_URLS_PIPS: Defines the possible PIPs available to the PDP. Multiple URLs can be specified, separated
by a comma

• PRP_URL_RI: Defines the URL of the designated Registry Interface for the PRP

3.1. Data Security Enforcement Infrastructure 11

SUNFISH Platform Documentation Documentation, Release 0.9

• PIP_DATABASE: Defines possible database values for the PIP. Each setting consists of a key and a value. In
general, no additional values are necessary for the PIP in the infrastructure tenant.

Dockerised Setup

The docker-based deployment also features a configuration file containing essentially the same (at this point mostly
self-explanatory) directives and a deployment script. This script has to be invoked after editing the configuration file
just as it is the case for the regular deployment-script-based setup.

To actually deploy the docker container, once the configuration file has been adapted, the following steps need to be
performed:

• Download the infrastructure docker container (infrastructure.tar) from the Releases tab in the GitHub
repository and copy it to install/docker/infrastructure/

• The preconfigured docker container infrastructure.tar needs to be loaded: docker load -i
infrastructure.tar

• The deployment script has to be executed (./deploy.sh)

This should start a docker container, inside which the PDP, the PRP and the PIP are running as web applications on a
Tomcat server on TOMCAT_PORT which is mapped to the same port on the host machine.

12 Chapter 3. Setting-up a SUNFISH Cloud Federation

CHAPTER 4

SUNFISH Use Case Demonstrator

This is the page for Use Case Demonstrator

13

SUNFISH Platform Documentation Documentation, Release 0.9

14 Chapter 4. SUNFISH Use Case Demonstrator

CHAPTER 5

API

This is a page for API

5.1 SUNFISH Policy Administration Point (PAP) API

The PAP interface follows a straight forward REST interface, as it requires bare access to the policy storage.

Version: 1.0.0

Contact information:
Alexander Marsalek
alexander.marsalek@a-sit.at

5.1.1 /v1/policies

GET

Summary: This endpoint is used by entities interfacing with the PAP to retrieve policies

Description:

Parameters
Name Lo-

cated
in

Description Re-
quired

Schema

SUNFISH-
issuer

header References the entity that issued the request. This field may include the data
that confirms the authenticati on of source entity and its authenticati on level.

Yes string

Responses

15

mailto:alexander.marsalek@a-sit.at

SUNFISH Platform Documentation Documentation, Release 0.9

Code Description Schema
200 The body of the response contains the requested policies according to the schema defined in

Listing 3. The response result set only contains a certain amount of entries. Pagination is done
using the Web Linking approach according to RFC5988. A Link header is included in the response
pointing to the next resultset: Link: https://%3Ch ost/pap/api/ v1/policies/ ?page=2>; rel=”next”
The possible “rel” values are “next” pointing to the next result-set. Pagination URLs are not
allowed to be constructed manually.

string

400 Invalid request
403 The requestor is not allowed to perform this operation
404 No policies matching the specified request were found

POST

Summary: This endpoint is used by entities interfacing with the PAP to add a policy

Description:

Parameters
Name Lo-

cated
in

Description Re-
quired

Schema

body body The body of the request contains a to be added policy according to the
schema in Listing 1.

Yes string

SUNFISH-
issuer

header References the entity that issued the request. This field may include the data
that confirms the authenticati on of source entity and its authenticati on level.

Yes string

Responses

Code Description Schema
200 Created successful string
400 Invalid request
403 The requestor is not allowed to perform this operation
409 The policy exists already

5.1.2 /v1/policies/{id}/{version}

DELETE

Summary: This endpoint is used by entities to remove policies

Description:

Parameters
Name Lo-

cated
in

Description Re-
quired

Schem
a

id path Id of the policy to delete Yes string
version path Specifies the version of the policy to be deleted Yes string
SUNFISH-
issuer

header References the entity that issued the request. This field may include the data
that confirms the authenticati on of source entity and its authenticati on level.

Yes string

Responses

16 Chapter 5. API

https://%3Ch

SUNFISH Platform Documentation Documentation, Release 0.9

Code Description Schema
200 Deleted successful string
400 Invalid request
403 The requestor is not allowed to perform this operation
404 Policy not found

5.2 SUNFISH Policy Decision Point (PDP) API

This API is primarily used by adjacent PEPs to issue authorization requests for intra-zone and cross-zone interactions.
In this specification we partially rely on the REST profile suggested by the OASIS XACML Standard

Version: 1.0.0

Contact information:
Bernd Prünster
bernd.pruenster@a-sit.at

5.2.1 /v1

GET

Summary: API entry point. This point is used to identify functionality and endpoints provided by PDP.

Description:

Parameters
Name Located in Description Required Schema

Responses

Code Description
200 The response contains a resource with link relation http://docs. oasis-open.o rg/ns/xacml/ relation/pdp

and a valid URL.

5.2.2 /v1/verifyServicePolicy

POST

Summary: Verify a service policy

Description:

Parameters
Name Located

in
Description Re-

quired
Schema

SUNFISH-
signature

header This field is used to provide integrity and authenticity of
messages.

No string

body body Contains XACML-format ted policy for PDP to perform
verification.

Yes string

5.2. SUNFISH Policy Decision Point (PDP) API 17

mailto:bernd.pruenster@a-sit.at
http://docs

SUNFISH Platform Documentation Documentation, Release 0.9

Responses

Code Description Schema
200 Contains information about the verification result. VerifyPolicyResult
400 Invalid request
404 The requestor is not allowed

5.2.3 /v1/verifyServicePolicySet

POST

Summary: Verify a service policy set

Description:

Parameters
Name Located

in
Description Re-

quired
Schema

SUNFISH-
signature

header This field is used to provide integrity and authenticity of
messages.

No string

body body Contains XACML-format ted policy set for PDP to perform
verification .

Yes string

Responses

Code Description Schema
200 Contains information about the verification result. VerifyPolicyResult
400 Invalid request
404 The requestor is not allowed

5.2.4 /v1/authorization

POST

Summary: This endpoint is used by PEPs to issue authorization decision requests to PDP. These requests are sent
using POST method. Inputs to this endpoint are parameters that describe access requests initiated by entities interacting
through the calling PEP. Additionally, this request contains other contextual parameters that can be used by PDP to
evaluate request.

Description:

Parameters
Name Lo-

cated
in

Description Re-
quired

Schem
a

SUNFISH-
signature

header This field is used to provide integrity and authenticity of messages. No string

body body Contains XACML-format ted (or other) request with all relevant data and
attributes necessary for PDP to perform authorization decision.

Yes string

Responses

18 Chapter 5. API

SUNFISH Platform Documentation Documentation, Release 0.9

Code Description Schema
200 Contains complete XACML-format ted answer. Body can include additional answer that deals

with activity context, if requested.
string

400 Invalid XACML request
404 Requestor is not allowed to perform the request

5.2.5 Models

VerifyPolicyResult

Name Type Description Required
status string Indicates the status of the verification operation. No
description string Description, containing detailed information about the requested operation. No
statusCode integer Status code of the operation. No

5.3 SUNFISH Policy Enforcement Point (PEP) API

The interactions executed inside one zone are checked by and enforced in the scope of a PEP assigned for that zone.
The approach is similar for the zones that consist of geographically dispersed locations: each PEP (or sub-PEP)
is responsible for its geographical unit or layer. Being the single point of contact of a zone, the PEP is primarily
responsible for checking incoming and outgoing requests. In the second instance, depending on security settings and
application requirements, PEP might serve as an inter-zone communication gateway, as well.

Version: 1.0.0

Contact information:
Dominik Ziegler
dominik.ziegler@a-sit.at

5.3.1 /v1/request

POST

Summary: This endpoint is used by PEPs to POST new requests to other PEPs. Inputs to this endpoint are contextual
parameters that establish the request, application and target specific settings. The response of this action is the data
record that contains request id and data structure describing status parameters or other PEP requirements.

Description:

Parameters

Responses

Code Description Schema
200 Body of the original request [byte]

5.3. SUNFISH Policy Enforcement Point (PEP) API 19

mailto:dominik.ziegler@a-sit.at

SUNFISH Platform Documentation Documentation, Release 0.9

5.3.2 /v1/app-request

POST

Summary: Applications can POST new requests to this endpoint. Inputs to this endpoint are contextual parameters
that establish the request, application and target specific settings. For this specification, the applications rely on
common SUNFISH functionalities and components. The response of this action is the original response of the target
service (synchronous use case).

Description:

Parameters

20 Chapter 5. API

SUNFISH Platform Documentation Documentation, Release 0.9

Name Located in Description Required Schema
body body Body of the original

request
No [byte]

SUNFISH-issuer header References the ap-
plication that issued
the request. This
field may include
the data required to
perform application
authenticati on, in
the form of authen-
ticati on token.

No string

SUNFISH-service header Machine-read able
description of end-
point including at
least an identifier of
the service. With
the service id, the
PEP can resolve
other required
attributes.

Yes string

SUNFISH-request header Machine-read able
description of the
target endpoint
and request data.
The PEP at least
requires the param-
eters method, port,
path and protocol. If
additional attributes
are registered in
the SUNFISH fed-
eration, the PEP
can retrieve these
attributes from a
correspondin
PIP. Furthermore,
this field may
include validity
constraints on
a request (not-
valid-b efore, not
valid-after) .

Yes string

SUNFISH-request-
parameters

header The parameters
related to the re-
quest, including
its priority, SLA
requirements , call-
back URI. This field
includes other re-
quest meta-data that
may extend or over-
ride the definitions
provided in central-
ized administrati
ve console. These
include request
type, application-
specific policies or
obligations to be
applied beyond the
ones defined in the
central console, or
parameters related
to data-masking
policies. The scope
of applicable and
allowed definitions
provided in this
variable depends
on an extent of
delegation policies,
as determined in
centralized console.

No string

SUNFISH-request-
data

header This field encap-
sulates the original
header data and the
original query string
as issued by the
application.

Yes string

SUNFISH-
signature

header This parameter is
used to ensure in-
tegrity and authen-
ticity of the source
message for appli-
cations which re-
quire a higher de-
gree of security. It
contains signed re-
quest and fields, ac-
cording to prede-
fined schema

No string

5.3. SUNFISH Policy Enforcement Point (PEP) API 21

SUNFISH Platform Documentation Documentation, Release 0.9

Responses

Code Description Schema
200 The same response as provided by the target service [byte]

5.4 SUNFISH Policy Information Point (PIP) API

The PIP is generally defined as “the system entity that acts as source of attribute values

Version: 1.0.0

Contact information:
Dominik Ziegler
dominik.ziegler@a-sit.at

5.4.1 /v1/collect

GET

Summary: This endpoint is used to retrieve collection of all available attribute ids

Description:

Parameters
Name Lo-

cated
in

Description Re-
quired

Schema

SUNFISH-
issuer

header References the entity that issued the request. This field includes the data that
confirms the authenticati on of source entity and its authenticati on level.

Yes string

Responses

Code Description Schema
200 Contains collection of attribute designators ids according to the attribute designator set

schema.
string

400 Invalid request
403 The requestor is not allowed

5.4.2 /v1/request

POST

Summary: This endpoint is used to retrieve additional attributes

Description:

Parameters

22 Chapter 5. API

mailto:dominik.ziegler@a-sit.at

SUNFISH Platform Documentation Documentation, Release 0.9

Name Lo-
cated
in

Description Re-
quired

Schema

body body Contains the requested attributes and the request context as issued by the PEP.
If multiple PIPs are involved, the PIP always receive the most recent request
context.

No string

SUNFISH-
issuer

header References the entity that issued the request. This field includes the data that
confirms the authenticati on of source entity and its authenticati on level.

Yes string

Responses

Code Description Schema
200 The request context was enhanced with all or some of the requested attributes. string
400 Invalid request
403 The requestor is not allowed
404 This PIP does not provide any of the requested attributes.

5.5 SUNFISH Policy Retrieval Point (PRP) API

The PRP is not included in the OASIS XACML standard, but provides another abstraction level of the PAP

Version: 1.0.0

Contact information:
Alexander Marsalek
alexander.marsalek@a-sit.at

5.5.1 /v1/collect

POST

Summary: This endpoint is used by PDPs to retrieve collection of policies for specified decision request.

Description:

Parameters
NameLo-

cated
in

Description Re-
quired

Schema

body body Contains the request formatted according to the XACML decision request language
with all relevant data and attributes necessary for the PRP to identify the relevant
policies.

Yes string

Responses

Code Description Schema
200 Contains single policy set where all policies are contained or references according to the

XACML policy set schema.
string

400 Invalid request
404 No policies matching the specified request were found

5.5. SUNFISH Policy Retrieval Point (PRP) API 23

mailto:alexander.marsalek@a-sit.at

SUNFISH Platform Documentation Documentation, Release 0.9

5.5.2 /v1/policyset/{id}/{version}

GET

Summary: This endpoint is used to retrieve policy by id. Optionally version can be specified.

Description:

Parameters
Name Lo-

cated
in

Description Required Schema

root-
Poli-
cySet

query true false Defines if root policy-se t
or re-usable policies- set should
be returned.

Yes

id path Specifies the id of the policy set to be returned in the
response.

Yes string

ver-
sion

path Specifies the version of the policy set to be returned in
the response. If no version is specified the newest
policy set will be returned.

Yes string

Responses

Code Description Schema
200 Contains the requested policy set string
400 Invalid request
403 The requestor is not allowed to retrieve this policy
404 The policy set with the specified id was not found

5.5.3 /v1/policy/{id}

GET

Summary: This endpoint is used to retrieve policy by id. Optionally version can be specified.

Description:

Parameters
Name Located in Description Required Schema
rootPolicy query true false Defines if root

policy or
re-usable policy
should be returned.

Yes

id path Specifies the id of
the policy to be re-
turned in the re-
sponse.

Yes string

Responses

Code Description Schema
200 Contains the requested policy set string
400 Invalid request
403 The requestor is not allowed to retrieve this policy
404 The policy set with the specified id was not found

24 Chapter 5. API

SUNFISH Platform Documentation Documentation, Release 0.9

5.5.4 /v1/policyset/{id}

GET

Summary: This endpoint is used to retrieve policy by id. Optionally version can be specified.

Description:

Parameters
Name Lo-

cated
in

Description Required Schema

root-
Policy-
Set

query true false Defines if root policy-se t or re-usable
policies- set should be returned.

Yes

id path Specifies the id of the policy set to
be returned in the response.

Yes string

Responses

Code Description Schema
200 Contains the requested policy set string
400 Invalid request
403 The requestor is not allowed to retrieve this policy
404 The policy set with the specified id was not found

5.5.5 /v1/policy/{id}/{version}

GET

Summary: This endpoint is used to retrieve policy by id. Optionally version can be specified.

Description:

Parameters
Name Located in Description Required Schema
rootPolicy query true false Defines if root

policy or
re-usable policy
should be returned.

Yes

id path Specifies the id of
the policy to be re-
turned in the re-
sponse.

Yes string

version path Specifies the version
of the policy to be
returned in the re-
sponse. If no ver-
sion is specified the
newest policy will
be returned.

Yes string

Responses

5.5. SUNFISH Policy Retrieval Point (PRP) API 25

SUNFISH Platform Documentation Documentation, Release 0.9

Code Description Schema
200 Contains the requested policy set string
400 Invalid request
403 The requestor is not allowed to retrieve this policy
404 The policy set with the specified id was not found

5.6 SUNFISH Intelligent Workload Manager (IWM) API

IWM provides lifecycle management for virtual resources in a multi-cloud multi-tenant environment. It also provides
optimized planner for the target infrastructure (costs, tags, etc). Functionality is implemented on top of the Waldur
hybrid cloud broker.

Version: 1.0.0

Contact information:
Ilja Livenson
ilja.livenson@gmail.com

5.6.1

PUT /api/openstacktenant-snapshots/{uuid}/

• Consumes: [u’application/json’]

Parameters
Name Position Description Type
uuid path string
data body

Responses

200 -

DELETE /api/openstacktenant-snapshots/{uuid}/

Parameters
Name Position Description Type
uuid path string

Responses

204 -

PATCH /api/openstacktenant-snapshots/{uuid}/

• Consumes: [u’application/json’]

26 Chapter 5. API

mailto:ilja.livenson@gmail.com

SUNFISH Platform Documentation Documentation, Release 0.9

Parameters
Name Position Description Type
uuid path string
data body

Responses

200 -

GET /api/openstacktenant-snapshots/{uuid}/

Parameters
Name Position Description Type
uuid path string

Responses

200 -

GET /api/customers/{uuid}/users/

A list of users connected to the customer

• Description: A list of users connected to the customer

Parameters
Name Position Description Type
uuid path string

Responses

200 -

POST /api/project-permissions/

- Projects are connected to customers, whereas the project may belong to one customer only,

• Description: - Projects are connected to customers, whereas the project may belong to one customer only,
and the customer may have multiple projects. - Projects are connected to services, whereas the project may
contain multiple services, and the service may belong to multiple projects. - Staff members can list all available
projects of any customer and create new projects. - Customer owners can list all projects that belong to any
of the customers they own. Customer owners can also create projects for the customers they own. - Project
administrators can list all the projects they are administrators in. - Project managers can list all the projects they
are managers in.

• Consumes: [u’application/json’]

Parameters
Name Position Description Type
data body

Responses

201 -

5.6. SUNFISH Intelligent Workload Manager (IWM) API 27

SUNFISH Platform Documentation Documentation, Release 0.9

GET /api/project-permissions/

Project permissions expresses connection of user to a project.

• Description: Project permissions expresses connection of user to a project. User may have either project
manager or system administrator permission in the project. Use */api/project-permissions/* endpoint to maintain
project permissions.

Note that project permissions can be viewed and modified only by customer owners and staff users.

To list all visible permissions, run a **GET** query against a list. Response will contain a list of project users
and their brief data.

To add a new user to the project, **POST** a new relationship to */api/project-permissions/* endpoint specify-
ing project, user and the role of the user (‘admin’ or ‘manager’):

.. code-block:: http

POST /api/project-permissions/ HTTP/1.1 Accept: application/json Authorization: Token
95a688962bf68678fd4c8cec4d138ddd9493c93b Host: example.com

{ “project”: “http://example.com/api/projects/6c9b01c251c24174a6691a1f894fae31/”, “role”: “manager”,
“user”: “http://example.com/api/users/82cec6c8e0484e0ab1429412fe4194b7/” }

Parameters
Name Position Description Type
page query string
page_size query string
role query string
user query string
user_url query string
username query string
full_name query string
native_name query string
o query string
customer query string
project query string
project_url query string

Responses

200 -

POST /api/openstack-tenants/{uuid}/pull_floating_ips/

Parameters
Name Position Description Type
uuid path string

Responses

201 -

PUT /api/hooks-email/{uuid}/

• Consumes: [u’application/json’]

28 Chapter 5. API

SUNFISH Platform Documentation Documentation, Release 0.9

Parameters
Name Position Description Type
uuid path string
data body

Responses

200 -

DELETE /api/hooks-email/{uuid}/

Parameters
Name Position Description Type
uuid path string

Responses

204 -

PATCH /api/hooks-email/{uuid}/

• Consumes: [u’application/json’]

Parameters
Name Position Description Type
uuid path string
data body

Responses

200 -

GET /api/hooks-email/{uuid}/

Parameters
Name Position Description Type
uuid path string

Responses

200 -

POST /api/openstacktenant-snapshots/

• Consumes: [u’application/json’]

Parameters
Name Position Description Type
data body

Responses

201 -

5.6. SUNFISH Intelligent Workload Manager (IWM) API 29

SUNFISH Platform Documentation Documentation, Release 0.9

GET /api/openstacktenant-snapshots/

Parameters
Name Position Description Type
page query string
page_size query string
customer query string
customer_uuid query string
customer_name query string
customer_native_name query string
customer_abbreviation query string
project query string
project_uuid query string
project_name query string
service_uuid query string
service_name query string
service_settings_name query string
service_settings_uuid query string
name query string
description query string
state query string
uuid query string
tag query string
rtag query string
o query string
source_volume_uuid query string
source_volume query string
backup_uuid query string
backup query string

Responses

200 -

PUT /api/openstacktenant-service-project-link/{id}/

• Consumes: [u’application/json’]

Parameters
Name Position Description Type
id path string
data body

Responses

200 -

DELETE /api/openstacktenant-service-project-link/{id}/

Parameters
Name Position Description Type
id path string

30 Chapter 5. API

SUNFISH Platform Documentation Documentation, Release 0.9

Responses

204 -

PATCH /api/openstacktenant-service-project-link/{id}/

• Consumes: [u’application/json’]

Parameters
Name Position Description Type
id path string
data body

Responses

200 -

GET /api/openstacktenant-service-project-link/{id}/

To remove a link, issue **DELETE** to URL of the corresponding connection as stuff user or customer owner.

• Description: To remove a link, issue **DELETE** to URL of the corresponding connection as stuff user or
customer owner.

Parameters
Name Position Description Type
id path string

Responses

200 -

POST /api/openstack-tenants/{uuid}/create_floating_ip/

Parameters
Name Position Description Type
uuid path string

Responses

201 -

PUT /api/project-permissions/{id}/

- Projects are connected to customers, whereas the project may belong to one customer only,

• Description: - Projects are connected to customers, whereas the project may belong to one customer only,
and the customer may have multiple projects. - Projects are connected to services, whereas the project may
contain multiple services, and the service may belong to multiple projects. - Staff members can list all available
projects of any customer and create new projects. - Customer owners can list all projects that belong to any
of the customers they own. Customer owners can also create projects for the customers they own. - Project
administrators can list all the projects they are administrators in. - Project managers can list all the projects they
are managers in.

• Consumes: [u’application/json’]

5.6. SUNFISH Intelligent Workload Manager (IWM) API 31

SUNFISH Platform Documentation Documentation, Release 0.9

Parameters
Name Position Description Type
id path string
data body

Responses

200 -

DELETE /api/project-permissions/{id}/

To remove a user from a project, delete corresponding connection (**url** field). Successful deletion

• Description: To remove a user from a project, delete corresponding connection (**url** field). Successful
deletion will return status code 204.

.. code-block:: http

DELETE /api/project-permissions/42/ HTTP/1.1 Authorization: Token
95a688962bf68678fd4c8cec4d138ddd9493c93b Host: example.com

Parameters
Name Position Description Type
id path string

Responses

204 -

PATCH /api/project-permissions/{id}/

- Projects are connected to customers, whereas the project may belong to one customer only,

• Description: - Projects are connected to customers, whereas the project may belong to one customer only,
and the customer may have multiple projects. - Projects are connected to services, whereas the project may
contain multiple services, and the service may belong to multiple projects. - Staff members can list all available
projects of any customer and create new projects. - Customer owners can list all projects that belong to any
of the customers they own. Customer owners can also create projects for the customers they own. - Project
administrators can list all the projects they are administrators in. - Project managers can list all the projects they
are managers in.

• Consumes: [u’application/json’]

Parameters
Name Position Description Type
id path string
data body

Responses

200 -

GET /api/project-permissions/{id}/

- Projects are connected to customers, whereas the project may belong to one customer only,

32 Chapter 5. API

SUNFISH Platform Documentation Documentation, Release 0.9

• Description: - Projects are connected to customers, whereas the project may belong to one customer only,
and the customer may have multiple projects. - Projects are connected to services, whereas the project may
contain multiple services, and the service may belong to multiple projects. - Staff members can list all available
projects of any customer and create new projects. - Customer owners can list all projects that belong to any
of the customers they own. Customer owners can also create projects for the customers they own. - Project
administrators can list all the projects they are administrators in. - Project managers can list all the projects they
are managers in.

Parameters
Name Position Description Type
id path string

Responses

200 -

GET /api/events/event_groups/

Returns a list of groups with event types.

• Description: Returns a list of groups with event types. Group is used in exclude_features query param.

Parameters

Name Position Description Type

Responses

200 -

PUT /api/hooks-push/{uuid}/

• Consumes: [u’application/json’]

Parameters
Name Position Description Type
uuid path string
data body

Responses

200 -

DELETE /api/hooks-push/{uuid}/

Parameters
Name Position Description Type
uuid path string

Responses

204 -

PATCH /api/hooks-push/{uuid}/

5.6. SUNFISH Intelligent Workload Manager (IWM) API 33

SUNFISH Platform Documentation Documentation, Release 0.9

• Consumes: [u’application/json’]

Parameters
Name Position Description Type
uuid path string
data body

Responses

200 -

GET /api/hooks-push/{uuid}/

Parameters
Name Position Description Type
uuid path string

Responses

200 -

GET /api/events/scope_types/

Returns a list of scope types acceptable by events filter.

• Description: Returns a list of scope types acceptable by events filter.

Parameters

Name Position Description Type

Responses

200 -

PUT /api/openstack-floating-ips/{uuid}/

Parameters
Name Position Description Type
uuid path string

Responses

200 -

DELETE /api/openstack-floating-ips/{uuid}/

Parameters
Name Position Description Type
uuid path string

Responses

204 -

34 Chapter 5. API

SUNFISH Platform Documentation Documentation, Release 0.9

PATCH /api/openstack-floating-ips/{uuid}/

Parameters
Name Position Description Type
uuid path string

Responses

200 -

GET /api/openstack-floating-ips/{uuid}/

Parameters
Name Position Description Type
uuid path string

Responses

200 -

POST /api/openstacktenant-volumes/{uuid}/extend/

Increase volume size

• Description: Increase volume size

• Consumes: [u’application/json’]

Parameters
Name Position Description Type
uuid path string
data body

Responses

201 -

PUT /api/openstack-subnets/{uuid}/

• Consumes: [u’application/json’]

Parameters
Name Position Description Type
uuid path string
data body

Responses

200 -

DELETE /api/openstack-subnets/{uuid}/

5.6. SUNFISH Intelligent Workload Manager (IWM) API 35

SUNFISH Platform Documentation Documentation, Release 0.9

Parameters
Name Position Description Type
uuid path string

Responses

204 -

PATCH /api/openstack-subnets/{uuid}/

• Consumes: [u’application/json’]

Parameters
Name Position Description Type
uuid path string
data body

Responses

200 -

GET /api/openstack-subnets/{uuid}/

Parameters
Name Position Description Type
uuid path string

Responses

200 -

PUT /api/openstacktenant-instances/{uuid}/

OpenStack instance permissions

• Description: OpenStack instance permissions ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

- Staff members can list all available VM instances in any service. - Customer owners can list all VM instances in
all the services that belong to any of the customers they own. - Project administrators can list all VM instances,
create new instances and start/stop/restart instances in all the services that are connected to any of the projects
they are administrators in. - Project managers can list all VM instances in all the services that are connected to
any of the projects they are managers in.

• Consumes: [u’application/json’]

Parameters
Name Position Description Type
uuid path string
data body

Responses

200 -

36 Chapter 5. API

SUNFISH Platform Documentation Documentation, Release 0.9

DELETE /api/openstacktenant-instances/{uuid}/

Deletion of an instance is done through sending a **DELETE** request to the instance URI.

• Description: Deletion of an instance is done through sending a **DELETE** request to the instance URI.
Valid request example (token is user specific):

.. code-block:: http

DELETE /api/openstacktenant-instances/abceed63b8e844afacd63daeac855474/ HTTP/1.1 Authorization: To-
ken c84d653b9ec92c6cbac41c706593e66f567a7fa4 Host: example.com

Only stopped instances or instances in ERRED state can be deleted.

By default when instance is destroyed, all data volumes attached to it are destroyed too. In order to preserve data
volumes use query parameter ?delete_volumes=false In this case data volumes are detached from the instance
and then instance is destroyed. Note that system volume is deleted anyway. For example:

.. code-block:: http

DELETE /api/openstacktenant-instances/abceed63b8e844afacd63daeac855474/?delete_volumes=false
HTTP/1.1 Authorization: Token c84d653b9ec92c6cbac41c706593e66f567a7fa4 Host: example.com

Parameters
Name Position Description Type
uuid path string

Responses

204 -

PATCH /api/openstacktenant-instances/{uuid}/

OpenStack instance permissions

• Description: OpenStack instance permissions ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

- Staff members can list all available VM instances in any service. - Customer owners can list all VM instances in
all the services that belong to any of the customers they own. - Project administrators can list all VM instances,
create new instances and start/stop/restart instances in all the services that are connected to any of the projects
they are administrators in. - Project managers can list all VM instances in all the services that are connected to
any of the projects they are managers in.

• Consumes: [u’application/json’]

Parameters
Name Position Description Type
uuid path string
data body

Responses

200 -

GET /api/openstacktenant-instances/{uuid}/

OpenStack instance permissions

5.6. SUNFISH Intelligent Workload Manager (IWM) API 37

SUNFISH Platform Documentation Documentation, Release 0.9

• Description: OpenStack instance permissions ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

- Staff members can list all available VM instances in any service. - Customer owners can list all VM instances in
all the services that belong to any of the customers they own. - Project administrators can list all VM instances,
create new instances and start/stop/restart instances in all the services that are connected to any of the projects
they are administrators in. - Project managers can list all VM instances in all the services that are connected to
any of the projects they are managers in.

Parameters
Name Position Description Type
uuid path string

Responses

200 -

POST /api/openstacktenant-instances/{uuid}/change_flavor/

OpenStack instance permissions

• Description: OpenStack instance permissions ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

- Staff members can list all available VM instances in any service. - Customer owners can list all VM instances in
all the services that belong to any of the customers they own. - Project administrators can list all VM instances,
create new instances and start/stop/restart instances in all the services that are connected to any of the projects
they are administrators in. - Project managers can list all VM instances in all the services that are connected to
any of the projects they are managers in.

• Consumes: [u’application/json’]

Parameters
Name Position Description Type
uuid path string
data body

Responses

201 -

POST /api/hooks-web/

To create new web hook issue **POST** against */api/hooks-web/* as an authenticated user.

• Description: To create new web hook issue **POST** against */api/hooks-web/* as an authenticated user. You
should specify list of event_types or event_groups.

Example of a request:

.. code-block:: http

POST /api/hooks-web/ HTTP/1.1 Content-Type: application/json Accept: application/json Authorization: To-
ken c84d653b9ec92c6cbac41c706593e66f567a7fa4 Host: example.com

{ “event_types”: [”resource_start_succeeded”], “event_groups”: [”users”], “destination_url”:
“http://example.com/” }

When hook is activated, **POST** request is issued against destination URL with the following data:

.. code-block:: javascript

38 Chapter 5. API

SUNFISH Platform Documentation Documentation, Release 0.9

{ “timestamp”: “2015-07-14T12:12:56.000000”, “message”: “Customer ABC LLC has been updated.”,
“type”: “customer_update_succeeded”, “context”: { “user_native_name”: “Walter Lebrowski”, “cus-
tomer_contact_details”: “”, “user_username”: “Walter”, “user_uuid”: “1c3323fc4ae44120b57ec40dea1be6e6”,
“customer_uuid”: “4633bbbb0b3a4b91bffc0e18f853de85”, “ip_address”: “8.8.8.8”, “user_full_name”: “Wal-
ter Lebrowski”, “customer_abbreviation”: “ABC LLC”, “customer_name”: “ABC LLC” }, “levelname”:
“INFO” }

Note that context depends on event type.

• Consumes: [u’application/json’]

Parameters
Name Position Description Type
data body

Responses

201 -

GET /api/hooks-web/

Parameters
Name Position Description Type
page query string
page_size query string
user query string
is_active query string
last_published query string
destination_url query string
content_type query string
author_uuid query string

Responses

200 -

POST /api/openstack-tenants/

• Consumes: [u’application/json’]

Parameters
Name Position Description Type
data body

Responses

201 -

GET /api/openstack-tenants/

Parameters

5.6. SUNFISH Intelligent Workload Manager (IWM) API 39

SUNFISH Platform Documentation Documentation, Release 0.9

Name Position Description Type
page query string
page_size query string
customer query string
customer_uuid query string
customer_name query string
customer_native_name query string
customer_abbreviation query string
project query string
project_uuid query string
project_name query string
service_uuid query string
service_name query string
service_settings_name query string
service_settings_uuid query string
name query string
description query string
state query string
uuid query string
tag query string
rtag query string
o query string

Responses

200 -

POST /api/openstack-floating-ips/

Parameters

Name Position Description Type

Responses

201 -

GET /api/openstack-floating-ips/

To get a list of all available floating IPs, issue **GET** against */api/floating-ips/*.

• Description: To get a list of all available floating IPs, issue **GET** against */api/floating-ips/*. Floating IPs
are read only. Each floating IP has fields: ‘address’, ‘status’.

Status *DOWN* means that floating IP is not linked to a VM, status *ACTIVE* means that it is in use.

Parameters

40 Chapter 5. API

SUNFISH Platform Documentation Documentation, Release 0.9

Name Position Description Type
page query string
page_size query string
customer query string
customer_uuid query string
customer_name query string
customer_native_name query string
customer_abbreviation query string
project query string
project_uuid query string
project_name query string
service_uuid query string
service_name query string
service_settings_name query string
service_settings_uuid query string
name query string
description query string
state query string
uuid query string
tag query string
rtag query string
runtime_state query string
o query string
tenant_uuid query string
tenant query string

Responses

200 -

POST /api/openstack-subnets/

• Consumes: [u’application/json’]

Parameters
Name Position Description Type
data body

Responses

201 -

GET /api/openstack-subnets/

Parameters

5.6. SUNFISH Intelligent Workload Manager (IWM) API 41

SUNFISH Platform Documentation Documentation, Release 0.9

Name Position Description Type
page query string
page_size query string
customer query string
customer_uuid query string
customer_name query string
customer_native_name query string
customer_abbreviation query string
project query string
project_uuid query string
project_name query string
service_uuid query string
service_name query string
service_settings_name query string
service_settings_uuid query string
name query string
description query string
state query string
uuid query string
tag query string
rtag query string
o query string
tenant_uuid query string
tenant query string
network_uuid query string
network query string

Responses

200 -

POST /api/openstack/

• Consumes: [u’application/json’]

Parameters
Name Position Description Type
data body

Responses

201 -

GET /api/openstack/

To create a service, issue a **POST** to */api/openstack/* as a customer owner.

• Description: To create a service, issue a **POST** to */api/openstack/* as a customer owner.

You can create service based on shared service settings. Example:

.. code-block:: http

POST /api/openstack/ HTTP/1.1 Content-Type: application/json Accept: application/json Authorization: Token
c84d653b9ec92c6cbac41c706593e66f567a7fa4 Host: example.com

42 Chapter 5. API

SUNFISH Platform Documentation Documentation, Release 0.9

{ “name”: “Common OpenStack”, “customer”: “http://example.com/api/customers/1040561ca9e046d2b74268600c7e1105/”,
“settings”: “http://example.com/api/service-settings/93ba615d6111466ebe3f792669059cb4/” }

Or provide your own credentials. Example:

.. code-block:: http

POST /api/openstack/ HTTP/1.1 Content-Type: application/json Accept: application/json Authorization: Token
c84d653b9ec92c6cbac41c706593e66f567a7fa4 Host: example.com

{ “name”: “My OpenStack”, “customer”: “http://example.com/api/customers/1040561ca9e046d2b74268600c7e1105/”,
“backend_url”: “http://keystone.example.com:5000/v2.0”, “username”: “admin”, “password”: “secret” }

Parameters
Name Position Description Type
page query string
page_size query string
name query string
project_uuid query string
customer query string
project query string
settings query string
shared query string
type query string
tag query string
rtag query string

Responses

200 -

GET /api/customers/{uuid}/balance_history/

Parameters
Name Position Description Type
uuid path string

Responses

200 -

POST /api/openstacktenant-instances/{uuid}/stop/

OpenStack instance permissions

• Description: OpenStack instance permissions ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

- Staff members can list all available VM instances in any service. - Customer owners can list all VM instances in
all the services that belong to any of the customers they own. - Project administrators can list all VM instances,
create new instances and start/stop/restart instances in all the services that are connected to any of the projects
they are administrators in. - Project managers can list all VM instances in all the services that are connected to
any of the projects they are managers in.

• Consumes: [u’application/json’]

Parameters

5.6. SUNFISH Intelligent Workload Manager (IWM) API 43

SUNFISH Platform Documentation Documentation, Release 0.9

Name Position Description Type
uuid path string
data body

Responses

201 -

POST /api/openstack-networks/{uuid}/pull/

• Consumes: [u’application/json’]

Parameters
Name Position Description Type
uuid path string
data body

Responses

201 -

POST /api/projects/

A new project can be created by users with staff privilege (is_staff=True) or customer owners.

• Description: A new project can be created by users with staff privilege (is_staff=True) or customer owners.
Project resource quota is optional. Example of a valid request:

.. code-block:: http

POST /api/projects/ HTTP/1.1 Content-Type: application/json Accept: application/json Authorization: Token
c84d653b9ec92c6cbac41c706593e66f567a7fa4 Host: example.com

{ “name”: “Project A”, “customer”: “http://example.com/api/customers/6c9b01c251c24174a6691a1f894fae31/”,
}

• Consumes: [u’application/json’]

Parameters
Name Position Description Type
data body

Responses

201 -

GET /api/projects/

To get a list of projects, run **GET** against */api/projects/* as authenticated user.

• Description: To get a list of projects, run **GET** against */api/projects/* as authenticated user. Here you can
also check actual value for project quotas and project usage

Note that a user can only see connected projects:

- projects that the user owns as a customer - projects where user has any role

Supported logic filters:

44 Chapter 5. API

SUNFISH Platform Documentation Documentation, Release 0.9

- ?can_manage - return a list of projects where current user is manager or a customer owner; - ?can_admin -
return a list of projects where current user is admin;

Parameters
Name Position Description Type
page query string
page_size query string
name query string
customer query string
customer_name query string
customer_native_name query string
customer_abbreviation query string
description query string
created query string
o query string

Responses

200 -

POST /api/openstacktenant-instances/

OpenStack instance permissions

• Description: OpenStack instance permissions ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

- Staff members can list all available VM instances in any service. - Customer owners can list all VM instances in
all the services that belong to any of the customers they own. - Project administrators can list all VM instances,
create new instances and start/stop/restart instances in all the services that are connected to any of the projects
they are administrators in. - Project managers can list all VM instances in all the services that are connected to
any of the projects they are managers in.

• Consumes: [u’application/json’]

Parameters
Name Position Description Type
data body

Responses

201 -

GET /api/openstacktenant-instances/

OpenStack instance permissions

• Description: OpenStack instance permissions ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

- Staff members can list all available VM instances in any service. - Customer owners can list all VM instances in
all the services that belong to any of the customers they own. - Project administrators can list all VM instances,
create new instances and start/stop/restart instances in all the services that are connected to any of the projects
they are administrators in. - Project managers can list all VM instances in all the services that are connected to
any of the projects they are managers in.

Parameters

5.6. SUNFISH Intelligent Workload Manager (IWM) API 45

SUNFISH Platform Documentation Documentation, Release 0.9

Name Position Description Type
page query string
page_size query string
customer query string
customer_uuid query string
customer_name query string
customer_native_name query string
customer_abbreviation query string
project query string
project_uuid query string
project_name query string
service_uuid query string
service_name query string
service_settings_name query string
service_settings_uuid query string
name query string
description query string
state query string
uuid query string
tag query string
rtag query string
o query string
tenant_uuid query string

Responses

200 -

GET /api/openstacktenant-security-groups/

Parameters
Name Position Description Type
page query string
page_size query string
name query string
settings_uuid query string
settings query string

Responses

200 -

POST /api/openstack-networks/

• Consumes: [u’application/json’]

Parameters
Name Position Description Type
data body

Responses

201 -

46 Chapter 5. API

SUNFISH Platform Documentation Documentation, Release 0.9

GET /api/openstack-networks/

Parameters
Name Position Description Type
page query string
page_size query string
customer query string
customer_uuid query string
customer_name query string
customer_native_name query string
customer_abbreviation query string
project query string
project_uuid query string
project_name query string
service_uuid query string
service_name query string
service_settings_name query string
service_settings_uuid query string
name query string
description query string
state query string
uuid query string
tag query string
rtag query string
o query string
tenant_uuid query string
tenant query string

Responses

200 -

POST /api/openstack-tenants/{uuid}/pull/

• Consumes: [u’application/json’]

Parameters
Name Position Description Type
uuid path string
data body

Responses

201 -

GET /api/openstacktenant-security-groups/{uuid}/

Parameters
Name Position Description Type
uuid path string

Responses

5.6. SUNFISH Intelligent Workload Manager (IWM) API 47

SUNFISH Platform Documentation Documentation, Release 0.9

200 -

PUT /api/openstack/{uuid}/

• Consumes: [u’application/json’]

Parameters
Name Position Description Type
uuid path string
data body

Responses

200 -

DELETE /api/openstack/{uuid}/

Parameters
Name Position Description Type
uuid path string

Responses

204 -

PATCH /api/openstack/{uuid}/

• Consumes: [u’application/json’]

Parameters
Name Position Description Type
uuid path string
data body

Responses

200 -

GET /api/openstack/{uuid}/

To update OpenStack service issue **PUT** or **PATCH** against */api/openstack/<service_uuid>/*

• Description: To update OpenStack service issue **PUT** or **PATCH** against
/api/openstack/<service_uuid>/ as a customer owner. You can update service’s ‘name‘ and ‘available_for_all‘
fields.

Example of a request:

.. code-block:: http

PUT /api/openstack/c6526bac12b343a9a65c4cd6710666ee/ HTTP/1.1 Content-Type: application/json Accept:
application/json Authorization: Token c84d653b9ec92c6cbac41c706593e66f567a7fa4 Host: example.com

{ “name”: “My OpenStack2” }

48 Chapter 5. API

SUNFISH Platform Documentation Documentation, Release 0.9

To remove OpenStack service, issue **DELETE** against */api/openstack/<service_uuid>/* as staff user or
customer owner.

Parameters
Name Position Description Type
uuid path string

Responses

200 -

POST /api/openstack-security-groups/

• Consumes: [u’application/json’]

Parameters
Name Position Description Type
data body

Responses

201 -

GET /api/openstack-security-groups/

Parameters

5.6. SUNFISH Intelligent Workload Manager (IWM) API 49

SUNFISH Platform Documentation Documentation, Release 0.9

Name Position Description Type
page query string
page_size query string
description query string
name query string
error_message query string
backend_id query string
start_time query string
service_project_link query string
tenant query string
customer query string
customer_uuid query string
customer_name query string
customer_native_name query string
customer_abbreviation query string
project query string
project_uuid query string
project_name query string
service_uuid query string
service_name query string
service_settings_uuid query string
service_settings_name query string
state query string
uuid query string
tag query string
rtag query string
o query string
tenant_uuid query string

Responses

200 -

GET /api/hooks/

Use */api/hooks/* to get a list of all the hooks of any type that a user can see.

• Description: Use */api/hooks/* to get a list of all the hooks of any type that a user can see.

Parameters
Name Position Description Type
page query string
page_size query string

Responses

200 -

POST /api/users/

• Consumes: [u’application/json’]

Parameters

50 Chapter 5. API

SUNFISH Platform Documentation Documentation, Release 0.9

Name Position Description Type
data body

Responses

201 -

GET /api/users/

User list is available to all authenticated users. To get a list,

• Description: User list is available to all authenticated users. To get a list, issue authenticated **GET** request
against */api/users/*.

User list supports several filters. All filters are set in HTTP query section. Field filters are listed below. All of
the filters apart from ?organization are using case insensitive partial matching.

Several custom filters are supported:

- ?current - filters out user making a request. Useful for getting information about a currently logged in user. -
?civil_number=XXX - filters out users with a specified civil number - ?is_active=True|False - show only active
(non-active) users - ?potential - shows users that have common connections to the customers and are potential
collaborators. Exclude staff users. Staff users can see all the customers. - ?potential_customer=<Customer
UUID> - optionally filter potential users by customer UUID - ?potential_organization=<organization name>
- optionally filter potential unconnected users by their organization name (deprecated, use ‘organization
plugin <http://nodeconductor-organization.readthedocs.org/en/stable/>‘_ instead) - ?organization_claimed -
show only users with a non-empty organization (deprecated, use ‘organization plugin <http://nodeconductor-
organization.readthedocs.org/en/stable/>‘_ instead)

The user can be created either through automated process on login with SAML token, or through a REST call
by a user with staff privilege.

Example of a creation request is below.

.. code-block:: http

POST /api/users/ HTTP/1.1 Content-Type: application/json Accept: application/json Authorization: Token
c84d653b9ec92c6cbac41c706593e66f567a7fa4 Host: example.com

{ “username”: “sample-user”, “full_name”: “full name”, “native_name”: “taisnimi”, “job_title”: “senior clean-
ing manager”, “email”: “example@example.com”, “civil_number”: “12121212”, “phone_number”: “”, “de-
scription”: “”, “organization”: “”, }

NB! Username field is case-insensitive. So “John” and “john” will be treated as the same user.

Parameters

Name Position Description Type
page query string
page_size query string
full_name query string
native_name query string
organization query string
organization_approved query string
email query string
phone_number query string
description query string
job_title query string

Continued on next page

5.6. SUNFISH Intelligent Workload Manager (IWM) API 51

SUNFISH Platform Documentation Documentation, Release 0.9

Table 5.1 – continued from previous page
Name Position Description Type
username query string
civil_number query string
is_active query string
registration_method query string
o query string
full_name query string
native_name query string
organization query string
organization_approved query string
email query string
phone_number query string
description query string
job_title query string
username query string
civil_number query string
is_active query string
registration_method query string
o query string
full_name query string
native_name query string
organization query string
organization_approved query string
email query string
phone_number query string
description query string
job_title query string
username query string
civil_number query string
is_active query string
registration_method query string
o query string

Responses

200 -

POST /api/openstacktenant-volumes/{uuid}/attach/

Attach volume to instance

• Description: Attach volume to instance

• Consumes: [u’application/json’]

Parameters
Name Position Description Type
uuid path string
data body

Responses

52 Chapter 5. API

SUNFISH Platform Documentation Documentation, Release 0.9

201 -

POST /api/openstacktenant-instances/{uuid}/update_security_groups/

OpenStack instance permissions

• Description: OpenStack instance permissions ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

- Staff members can list all available VM instances in any service. - Customer owners can list all VM instances in
all the services that belong to any of the customers they own. - Project administrators can list all VM instances,
create new instances and start/stop/restart instances in all the services that are connected to any of the projects
they are administrators in. - Project managers can list all VM instances in all the services that are connected to
any of the projects they are managers in.

• Consumes: [u’application/json’]

Parameters
Name Position Description Type
uuid path string
data body

Responses

201 -

POST /api/hooks-email/

To create new email hook issue **POST** against */api/hooks-email/* as an authenticated user.

• Description: To create new email hook issue **POST** against */api/hooks-email/* as an authenticated user.
You should specify list of event_types or event_groups.

Example of a request:

.. code-block:: http

POST /api/hooks-email/ HTTP/1.1 Content-Type: application/json Accept: application/json Authorization: To-
ken c84d653b9ec92c6cbac41c706593e66f567a7fa4 Host: example.com

{ “event_types”: [”openstack_instance_start_succeeded”], “event_groups”: [”users”], “email”:
“test@example.com” }

You may temporarily disable hook without deleting it by issuing following **PATCH** request against hook
URL:

.. code-block:: javascript

{ “is_active”: “false” }

• Consumes: [u’application/json’]

Parameters
Name Position Description Type
data body

Responses

201 -

5.6. SUNFISH Intelligent Workload Manager (IWM) API 53

SUNFISH Platform Documentation Documentation, Release 0.9

GET /api/hooks-email/

Parameters
Name Position Description Type
page query string
page_size query string
user query string
is_active query string
last_published query string
email query string
author_uuid query string

Responses

200 -

POST /api/openstacktenant/{uuid}/unlink/

Unlink all related resources, service project link and service itself.

• Description: Unlink all related resources, service project link and service itself.

• Consumes: [u’application/json’]

Parameters
Name Position Description Type
uuid path string
data body

Responses

201 -

PUT /api/customer-permissions/{id}/

- Customers are connected to users through roles, whereas user may have role “customer owner”.

• Description: - Customers are connected to users through roles, whereas user may have role “customer owner”.
- Each customer may have multiple owners, and each user may own multiple customers. - Staff members can list
all available customers and create new customers. - Customer owners can list all customers they own. Customer
owners can also create new customers. - Project administrators can list all the customers that own any of the
projects they are administrators in. - Project managers can list all the customers that own any of the projects
they are managers in.

• Consumes: [u’application/json’]

Parameters
Name Position Description Type
id path string
data body

Responses

200 -

54 Chapter 5. API

SUNFISH Platform Documentation Documentation, Release 0.9

DELETE /api/customer-permissions/{id}/

- Customers are connected to users through roles, whereas user may have role “customer owner”.

• Description: - Customers are connected to users through roles, whereas user may have role “customer owner”.
- Each customer may have multiple owners, and each user may own multiple customers. - Staff members can list
all available customers and create new customers. - Customer owners can list all customers they own. Customer
owners can also create new customers. - Project administrators can list all the customers that own any of the
projects they are administrators in. - Project managers can list all the customers that own any of the projects
they are managers in.

Parameters
Name Position Description Type
id path string

Responses

204 -

PATCH /api/customer-permissions/{id}/

- Customers are connected to users through roles, whereas user may have role “customer owner”.

• Description: - Customers are connected to users through roles, whereas user may have role “customer owner”.
- Each customer may have multiple owners, and each user may own multiple customers. - Staff members can list
all available customers and create new customers. - Customer owners can list all customers they own. Customer
owners can also create new customers. - Project administrators can list all the customers that own any of the
projects they are administrators in. - Project managers can list all the customers that own any of the projects
they are managers in.

• Consumes: [u’application/json’]

Parameters
Name Position Description Type
id path string
data body

Responses

200 -

GET /api/customer-permissions/{id}/

To remove a user from a customer owner group, delete corresponding connection (**url** field).

• Description: To remove a user from a customer owner group, delete corresponding connection (**url** field).
Successful deletion will return status code 204.

.. code-block:: http

DELETE /api/customer-permissions/71/ HTTP/1.1 Authorization: Token
95a688962bf68678fd4c8cec4d138ddd9493c93b Host: example.com

Parameters
Name Position Description Type
id path string

5.6. SUNFISH Intelligent Workload Manager (IWM) API 55

SUNFISH Platform Documentation Documentation, Release 0.9

Responses

200 -

POST /api/openstack-tenants/{uuid}/create_network/

• Consumes: [u’application/json’]

Parameters
Name Position Description Type
uuid path string
data body

Responses

201 -

PUT /api/openstack-service-project-link/{id}/

• Consumes: [u’application/json’]

Parameters
Name Position Description Type
id path string
data body

Responses

200 -

DELETE /api/openstack-service-project-link/{id}/

Parameters
Name Position Description Type
id path string

Responses

204 -

PATCH /api/openstack-service-project-link/{id}/

• Consumes: [u’application/json’]

Parameters
Name Position Description Type
id path string
data body

Responses

200 -

56 Chapter 5. API

SUNFISH Platform Documentation Documentation, Release 0.9

GET /api/openstack-service-project-link/{id}/

To remove a link, issue **DELETE** to URL of the corresponding connection as stuff user or customer owner.

• Description: To remove a link, issue **DELETE** to URL of the corresponding connection as stuff user or
customer owner.

Parameters
Name Position Description Type
id path string

Responses

200 -

POST /api/users/{uuid}/password/

To change a user password, submit a **POST** request to the user’s RPC URL, specifying new password

• Description: To change a user password, submit a **POST** request to the user’s RPC URL, specifying new
password by staff user or account owner.

Password is expected to be at least 7 symbols long and contain at least one number and at least one lower or
upper case.

Example of a valid request:

.. code-block:: http

POST /api/users/e0c058d06864441fb4f1c40dee5dd4fd/password/ HTTP/1.1 Content-Type: application/json
Accept: application/json Authorization: Token c84d653b9ec92c6cbac41c706593e66f567a7fa4 Host: exam-
ple.com

{ “password”: “nQvqHzeP123”, }

• Consumes: [u’application/json’]

Parameters
Name Position Description Type
uuid path string
data body

Responses

201 -

GET /api/openstacktenant-floating-ips/

Parameters
Name Position Description Type
page query string
page_size query string
name query string
settings_uuid query string
settings query string
runtime_state query string

Responses

5.6. SUNFISH Intelligent Workload Manager (IWM) API 57

SUNFISH Platform Documentation Documentation, Release 0.9

200 -

POST /api/openstacktenant-instances/{uuid}/unassign_floating_ip/

OpenStack instance permissions

• Description: OpenStack instance permissions ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

- Staff members can list all available VM instances in any service. - Customer owners can list all VM instances in
all the services that belong to any of the customers they own. - Project administrators can list all VM instances,
create new instances and start/stop/restart instances in all the services that are connected to any of the projects
they are administrators in. - Project managers can list all VM instances in all the services that are connected to
any of the projects they are managers in.

Parameters
Name Position Description Type
uuid path string

Responses

201 -

POST /api/hooks-push/

To create new push hook issue **POST** against */api/hooks-push/* as an authenticated user.

• Description: To create new push hook issue **POST** against */api/hooks-push/* as an authenticated user.
You should specify list of event_types or event_groups.

Example of a request:

.. code-block:: http

POST /api/hooks-push/ HTTP/1.1 Content-Type: application/json Accept: application/json Authorization: To-
ken c84d653b9ec92c6cbac41c706593e66f567a7fa4 Host: example.com

{ “event_types”: [”resource_start_succeeded”], “event_groups”: [”users”], “type”: “Android” }

You may temporarily disable hook without deleting it by issuing following **PATCH** request against hook
URL:

.. code-block:: javascript

{ “is_active”: “false” }

• Consumes: [u’application/json’]

Parameters
Name Position Description Type
data body

Responses

201 -

GET /api/hooks-push/

58 Chapter 5. API

SUNFISH Platform Documentation Documentation, Release 0.9

Parameters
Name Position Description Type
page query string
page_size query string
user query string
is_active query string
last_published query string
type query string
device_id query string
device_manufacturer query string
device_model query string
token query string
author_uuid query string

Responses

200 -

POST /api/events/

• Consumes: [u’application/json’]

Parameters
Name Position Description Type
data body

Responses

201 -

GET /api/events/

To get a list of events - run **GET** against */api/events/* as authenticated user. Note that a user can

• Description: To get a list of events - run **GET** against */api/events/* as authenticated user. Note that a user
can only see events connected to objects she is allowed to see.

Sorting is supported in ascending and descending order by specifying a field to an **?o=** parameter. By
default events are sorted by @timestamp in descending order.

Run POST against */api/events/* to create an event. Only users with staff privileges can create events. New
event will be emitted with ‘custom_notification‘ event type. Request should contain following fields:

- level: the level of current event. Following levels are supported: debug, info, warning, error - message: string
representation of event message - scope: optional URL, which points to the loggable instance

Request example:

.. code-block:: javascript

POST /api/events/ Accept: application/json Content-Type: application/json Authorization: Token
c84d653b9ec92c6cbac41c706593e66f567a7fa4 Host: example.com

{ “level”: “info”, “message”: “message#1”, “scope”: “http://example.com/api/customers/9cd869201e1b4158a285427fcd790c1c/”
}

Parameters

5.6. SUNFISH Intelligent Workload Manager (IWM) API 59

SUNFISH Platform Documentation Documentation, Release 0.9

Name Position Description Type
page query string
page_size query string

Responses

200 -

GET /api/customer-permissions-log/{id}/

Parameters
Name Position Description Type
id path string

Responses

200 -

POST /api/openstack-tenants/{uuid}/create_security_group/

Example of a request:

• Description: Example of a request:

.. code-block:: http

{ “name”: “Security group name”, “description”: “description”, “rules”: [{ “protocol”: “tcp”, “from_port”:
1, “to_port”: 10, “cidr”: “10.1.1.0/24” }, { “protocol”: “udp”, “from_port”: 10, “to_port”: 8000, “cidr”:
“10.1.1.0/24” }] }

• Consumes: [u’application/json’]

Parameters
Name Position Description Type
uuid path string
data body

Responses

201 -

POST /api/openstacktenant-volumes/{uuid}/pull/

• Consumes: [u’application/json’]

Parameters
Name Position Description Type
uuid path string
data body

Responses

201 -

GET /api/customer-permissions-log/

60 Chapter 5. API

SUNFISH Platform Documentation Documentation, Release 0.9

Parameters
Name Position Description Type
page query string
page_size query string
role query string
user query string
user_url query string
username query string
full_name query string
native_name query string
o query string
customer query string
customer_url query string

Responses

200 -

GET /api/openstacktenant-flavors/

VM instance flavor is a pre-defined set of virtual hardware parameters that the instance will use:

• Description: VM instance flavor is a pre-defined set of virtual hardware parameters that the instance will use:
CPU, memory, disk size etc. VM instance flavor is not to be confused with VM template – flavor is a set of
virtual hardware parameters whereas template is a definition of a system to be installed on this instance.

Parameters
Name Position Description Type
page query string
page_size query string
ram query string
ram__gte query string
ram__lte query string
name query string
settings query string
cores query string
cores__gte query string
cores__lte query string
disk query string
disk__gte query string
disk__lte query string
settings_uuid query string
o query string

Responses

200 -

POST /api/openstack-ip-mappings/

• Consumes: [u’application/json’]

Parameters

5.6. SUNFISH Intelligent Workload Manager (IWM) API 61

SUNFISH Platform Documentation Documentation, Release 0.9

Name Position Description Type
data body

Responses

201 -

GET /api/openstack-ip-mappings/

Parameters
Name Position Description Type
page query string
page_size query string
project query string
private_ip query string
public_ip query string

Responses

200 -

GET /api/openstacktenant-flavors/{uuid}/

VM instance flavor is a pre-defined set of virtual hardware parameters that the instance will use:

• Description: VM instance flavor is a pre-defined set of virtual hardware parameters that the instance will use:
CPU, memory, disk size etc. VM instance flavor is not to be confused with VM template – flavor is a set of
virtual hardware parameters whereas template is a definition of a system to be installed on this instance.

Parameters
Name Position Description Type
uuid path string

Responses

200 -

PUT /api/openstack-packages/{uuid}/

Parameters
Name Position Description Type
uuid path string

Responses

200 -

DELETE /api/openstack-packages/{uuid}/

Parameters
Name Position Description Type
uuid path string

Responses

62 Chapter 5. API

SUNFISH Platform Documentation Documentation, Release 0.9

204 -

PATCH /api/openstack-packages/{uuid}/

Parameters
Name Position Description Type
uuid path string

Responses

200 -

GET /api/openstack-packages/{uuid}/

Parameters
Name Position Description Type
uuid path string

Responses

200 -

POST /api/keys/

SSH public keys are injected to VM instances during creation, so that holder of corresponding SSH private key can

• Description: SSH public keys are injected to VM instances during creation, so that holder of corresponding
SSH private key can log in to that instance. SSH public keys are connected to user accounts, whereas the key
may belong to one user only, and the user may have multiple SSH keys. Users can only access SSH keys
connected to their accounts. Staff users can see all the accounts. Project administrators can select what SSH key
will be injected into VM instance during instance provisioning.

• Consumes: [u’application/json’]

Parameters
Name Position Description Type
data body

Responses

201 -

GET /api/keys/

To get a list of SSH keys, run **GET** against */api/keys/* as authenticated user.

• Description: To get a list of SSH keys, run **GET** against */api/keys/* as authenticated user.

A new SSH key can be created by any active users. Example of a valid request:

.. code-block:: http

POST /api/keys/ HTTP/1.1 Content-Type: application/json Accept: application/json Authorization: Token
c84d653b9ec92c6cbac41c706593e66f567a7fa4 Host: example.com

5.6. SUNFISH Intelligent Workload Manager (IWM) API 63

SUNFISH Platform Documentation Documentation, Release 0.9

{ “name”: “ssh_public_key1”, “public_key”: “ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABAQDDURXDP5YhOQUYoDuTxJ84DuzqMJYJqJ8+SZT28
TtLm5yBDRLKAERqtlbH2gkrQ3US58gd2r8H9jAmQOydfvgwauxuJUE4eDpaMWupqquMYsYLB5f+vVGhdZbbzfc6DTQ2rY
dknWoMoArlG7MvRMA/xQ0ye1muTv+mYMipnd7Z+WH0uVArYI9QBpqC/gpZRRIouQ4VIQIVWGoT6M4Kat5ZBXEa9yP+9du
D2C05GX3gumoSAVyAcDHn/xgej9pYRXGha4l+LKkFdGwAoXdV1z79EG1+9ns7wXuqMJFHM2KDpxAizV0GkZcojISvDwuh
vEAFdOJcqjyyH4FOGYa8usP1 jhon@example.com”, }

Parameters
Name Position Description Type
page query string
page_size query string
name query string
fingerprint query string
uuid query string
user_uuid query string
o query string

Responses

200 -

GET /api/customers/{uuid}/counters/

Count number of entities related to customer

• Description: Count number of entities related to customer

.. code-block:: javascript

{ “alerts”: 12, “services”: 1, “projects”: 1, “users”: 3 }

Parameters
Name Position Description Type
uuid path string
page query string
page_size query string

Responses

200 -

GET /api/openstack-images/{uuid}/

Parameters
Name Position Description Type
uuid path string

Responses

200 -

PUT /api/projects/{uuid}/

• Consumes: [u’application/json’]

64 Chapter 5. API

SUNFISH Platform Documentation Documentation, Release 0.9

Parameters
Name Position Description Type
uuid path string
data body

Responses

200 -

DELETE /api/projects/{uuid}/

Deletion of a project is done through sending a **DELETE** request to the project instance URI.

• Description: Deletion of a project is done through sending a **DELETE** request to the project instance URI.
Please note, that if a project has connected instances, deletion request will fail with 409 response code.

Valid request example (token is user specific):

.. code-block:: http

DELETE /api/projects/6c9b01c251c24174a6691a1f894fae31/ HTTP/1.1 Authorization: Token
c84d653b9ec92c6cbac41c706593e66f567a7fa4 Host: example.com

Parameters
Name Position Description Type
uuid path string

Responses

204 -

PATCH /api/projects/{uuid}/

• Consumes: [u’application/json’]

Parameters
Name Position Description Type
uuid path string
data body

Responses

200 -

GET /api/projects/{uuid}/

Optional ‘field‘ query parameter (can be list) allows to limit what fields are returned.

• Description: Optional ‘field‘ query parameter (can be list) allows to limit what fields are returned. For example,
given request /api/projects/<uuid>/?field=uuid&field=name you get response like this:

.. code-block:: javascript

{ “uuid”: “90bcfe38b0124c9bbdadd617b5d739f5”, “name”: “Default” }

Parameters

5.6. SUNFISH Intelligent Workload Manager (IWM) API 65

SUNFISH Platform Documentation Documentation, Release 0.9

Name Position Description Type
uuid path string

Responses

200 -

POST /api/openstacktenant-instances/{uuid}/pull/

OpenStack instance permissions

• Description: OpenStack instance permissions ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

- Staff members can list all available VM instances in any service. - Customer owners can list all VM instances in
all the services that belong to any of the customers they own. - Project administrators can list all VM instances,
create new instances and start/stop/restart instances in all the services that are connected to any of the projects
they are administrators in. - Project managers can list all VM instances in all the services that are connected to
any of the projects they are managers in.

• Consumes: [u’application/json’]

Parameters
Name Position Description Type
uuid path string
data body

Responses

201 -

GET /api/service-settings/

To get a list of service settings, run **GET** against */api/service-settings/* as an authenticated user.

• Description: To get a list of service settings, run **GET** against */api/service-settings/* as an authenticated
user. Only settings owned by this user or shared settings will be listed.

Supported filters are:

- ?name=<text> - partial matching used for searching - ?type=<type> - choices: OpenStack, DigitalOcean,
Amazon, JIRA, GitLab, Oracle - ?state=<state> - choices: New, Creation Scheduled, Creating, Sync Scheduled,
Syncing, In Sync, Erred - ?shared=<bool> - allows to filter shared service settings

Parameters
Name Position Description Type
page query string
page_size query string
name query string
type query string
state query string
shared query string
name query string
type query string
state query string
shared query string

Responses

66 Chapter 5. API

SUNFISH Platform Documentation Documentation, Release 0.9

200 -

GET /api/openstack-flavors/{uuid}/

VM instance flavor is a pre-defined set of virtual hardware parameters that the instance will use:

• Description: VM instance flavor is a pre-defined set of virtual hardware parameters that the instance will use:
CPU, memory, disk size etc. VM instance flavor is not to be confused with VM template – flavor is a set of
virtual hardware parameters whereas template is a definition of a system to be installed on this instance.

Parameters
Name Position Description Type
uuid path string

Responses

200 -

POST /api/openstack-packages/

• Consumes: [u’application/json’]

Parameters
Name Position Description Type
data body

Responses

201 -

GET /api/openstack-packages/

Parameters
Name Position Description Type
page query string
page_size query string
name query string
customer query string
project query string
tenant query string

Responses

200 -

GET /api/openstacktenant-floating-ips/{uuid}/

Parameters
Name Position Description Type
uuid path string

Responses

5.6. SUNFISH Intelligent Workload Manager (IWM) API 67

SUNFISH Platform Documentation Documentation, Release 0.9

200 -

GET /api/openstack-flavors/

VM instance flavor is a pre-defined set of virtual hardware parameters that the instance will use:

• Description: VM instance flavor is a pre-defined set of virtual hardware parameters that the instance will use:
CPU, memory, disk size etc. VM instance flavor is not to be confused with VM template – flavor is a set of
virtual hardware parameters whereas template is a definition of a system to be installed on this instance.

Parameters
Name Position Description Type
page query string
page_size query string
ram query string
ram__gte query string
ram__lte query string
name query string
settings query string
cores query string
cores__gte query string
cores__lte query string
disk query string
disk__gte query string
disk__lte query string
settings_uuid query string
o query string

Responses

200 -

POST /api/openstacktenant-instances/{uuid}/restart/

OpenStack instance permissions

• Description: OpenStack instance permissions ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

- Staff members can list all available VM instances in any service. - Customer owners can list all VM instances in
all the services that belong to any of the customers they own. - Project administrators can list all VM instances,
create new instances and start/stop/restart instances in all the services that are connected to any of the projects
they are administrators in. - Project managers can list all VM instances in all the services that are connected to
any of the projects they are managers in.

• Consumes: [u’application/json’]

Parameters
Name Position Description Type
uuid path string
data body

Responses

201 -

68 Chapter 5. API

SUNFISH Platform Documentation Documentation, Release 0.9

DELETE /api/keys/{uuid}/

SSH public keys are injected to VM instances during creation, so that holder of corresponding SSH private key can

• Description: SSH public keys are injected to VM instances during creation, so that holder of corresponding
SSH private key can log in to that instance. SSH public keys are connected to user accounts, whereas the key
may belong to one user only, and the user may have multiple SSH keys. Users can only access SSH keys
connected to their accounts. Staff users can see all the accounts. Project administrators can select what SSH key
will be injected into VM instance during instance provisioning.

Parameters
Name Position Description Type
uuid path string

Responses

204 -

GET /api/keys/{uuid}/

SSH public keys are injected to VM instances during creation, so that holder of corresponding SSH private key can

• Description: SSH public keys are injected to VM instances during creation, so that holder of corresponding
SSH private key can log in to that instance. SSH public keys are connected to user accounts, whereas the key
may belong to one user only, and the user may have multiple SSH keys. Users can only access SSH keys
connected to their accounts. Staff users can see all the accounts. Project administrators can select what SSH key
will be injected into VM instance during instance provisioning.

Parameters
Name Position Description Type
uuid path string

Responses

200 -

GET /api/service-metadata/

To get a list of supported service types, run **GET** against */api/service-metadata/* as an authenticated user.

• Description: To get a list of supported service types, run **GET** against */api/service-metadata/* as an
authenticated user. Use an endpoint from the returned list in order to create new service.

Parameters
Name Position Description Type
page query string
page_size query string

Responses

200 -

POST /api/openstacktenant-volumes/

• Consumes: [u’application/json’]

5.6. SUNFISH Intelligent Workload Manager (IWM) API 69

SUNFISH Platform Documentation Documentation, Release 0.9

Parameters
Name Position Description Type
data body

Responses

201 -

GET /api/openstacktenant-volumes/

Parameters
Name Position Description Type
page query string
page_size query string
customer query string
customer_uuid query string
customer_name query string
customer_native_name query string
customer_abbreviation query string
project query string
project_uuid query string
project_name query string
service_uuid query string
service_name query string
service_settings_name query string
service_settings_uuid query string
name query string
description query string
state query string
uuid query string
tag query string
rtag query string
instance query string
instance_uuid query string
o query string

Responses

200 -

POST /api/openstack-tenants/{uuid}/create_service/

Create non-admin service with credentials from the tenant

• Description: Create non-admin service with credentials from the tenant

• Consumes: [u’application/json’]

Parameters
Name Position Description Type
uuid path string
data body

Responses

70 Chapter 5. API

SUNFISH Platform Documentation Documentation, Release 0.9

201 -

GET /api/version/

Retrieve version of the application

• Description: Retrieve version of the application

Parameters

Name Position Description Type

Responses

200 -

GET /api/resources/

To get a list of supported resources’ actions, run **OPTIONS** against

• Description: To get a list of supported resources’ actions, run **OPTIONS** against */api/<resource_url>/*
as an authenticated user.

It is possible to filter and order by resource-specific fields, but this filters will be applied only to resources that
support such filtering. For example it is possible to sort resource by ?o=ram, but SugarCRM crms will ignore
this ordering, because they do not support such option.

Filter resources by type or category ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

There are two query argument to select resources by their type.

- Specify explicitly list of resource types, for example:

/api/<resource_endpoint>/?resource_type=DigitalOcean.Droplet&resource_type=OpenStack.Instance

- Specify category, one of vms, apps, private_clouds or storages for example:

/api/<resource_endpoint>/?category=vms

Filtering by monitoring fields ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Resources may have SLA attached to it. Example rendering of SLA:

.. code-block:: javascript

“sla”: { “value”: 95.0 “agreed_value”: 99.0, “period”: “2016-03” }

You may filter or order resources by SLA. Default period is current year and month.

- Example query for filtering list of resources by actual SLA:

/api/<resource_endpoint>/?actual_sla=90&period=2016-02

- Warning! If resource does not have SLA attached to it, it is not included in ordered response. Example query
for ordering list of resources by actual SLA:

/api/<resource_endpoint>/?o=actual_sla&period=2016-02

Service list is displaying current SLAs for each of the items. By default, SLA period is set to the current month.
To change the period pass it as a query argument:

- ?period=YYYY-MM - return a list with SLAs for a given month - ?period=YYYY - return a list with SLAs
for a given year

5.6. SUNFISH Intelligent Workload Manager (IWM) API 71

SUNFISH Platform Documentation Documentation, Release 0.9

In all cases all currently running resources are returned, if SLA for the given period is not known or not present,
it will be shown as **null** in the response.

Resources may have monitoring items attached to it. Example rendering of monitoring items:

.. code-block:: javascript

“monitoring_items”: { “application_state”: 1 }

You may filter or order resources by monitoring item.

- Example query for filtering list of resources by installation state:

/api/<resource_endpoint>/?monitoring__installation_state=1

- Warning! If resource does not have monitoring item attached to it, it is not included in ordered response.
Example query for ordering list of resources by installation state:

/api/<resource_endpoint>/?o=monitoring__installation_state

Filtering by tags ^^^^^^^^^^^^^^^^^

Resource may have tags attached to it. Example of tags rendering:

.. code-block:: javascript

“tags”: [“license-os:centos7”, “os-family:linux”, “license-application:postgresql”, “support:premium”]

Tags filtering:

- ?tag=IaaS - filter by full tag name, using method OR. Can be list. - ?rtag=os-family:linux - filter by full tag
name, using AND method. Can be list. - ?tag__license-os=centos7 - filter by tags with particular prefix.

Tags ordering:

- ?o=tag__license-os - order by tag with particular prefix. Instances without given tag will not be returned.

Parameters
Name Position Description Type
page query string
page_size query string

Responses

200 -

POST /api-auth/password/

Api view loosely based on DRF’s default ObtainAuthToken,

• Description: Api view loosely based on DRF’s default ObtainAuthToken, but with the responses formats and
status codes aligned with BasicAuthentication behavior.

Valid request example:

.. code-block:: http

POST /api-auth/password/ HTTP/1.1

Parameters

Name Position Description Type

Responses

72 Chapter 5. API

SUNFISH Platform Documentation Documentation, Release 0.9

201 -

PUT /api/openstacktenant/{uuid}/

• Consumes: [u’application/json’]

Parameters
Name Position Description Type
uuid path string
data body

Responses

200 -

DELETE /api/openstacktenant/{uuid}/

Parameters
Name Position Description Type
uuid path string

Responses

204 -

PATCH /api/openstacktenant/{uuid}/

• Consumes: [u’application/json’]

Parameters
Name Position Description Type
uuid path string
data body

Responses

200 -

GET /api/openstacktenant/{uuid}/

Parameters
Name Position Description Type
uuid path string

Responses

200 -

POST /api/openstacktenant-instances/{uuid}/assign_floating_ip/

To assign floating IP to the instance, make **POST** request to

5.6. SUNFISH Intelligent Workload Manager (IWM) API 73

SUNFISH Platform Documentation Documentation, Release 0.9

• Description: To assign floating IP to the instance, make **POST** request to */api/openstacktenant-
instances/<uuid>/assign_floating_ip/* with link to the floating IP. Make empty POST request to allocate new
floating IP and assign it to instance. Note that instance should be in stable state, service project link of the
instance should be in stable state and have external network.

Example of a valid request:

.. code-block:: http

POST /api/openstacktenant-instances/6c9b01c251c24174a6691a1f894fae31/assign_floating_ip/
HTTP/1.1 Content-Type: application/json Accept: application/json Authorization: Token
c84d653b9ec92c6cbac41c706593e66f567a7fa4 Host: example.com

{ “floating_ip”: “http://example.com/api/floating-ips/5e7d93955f114d88981dea4f32ab673d/” }

• Consumes: [u’application/json’]

Parameters
Name Position Description Type
uuid path string
data body

Responses

201 -

PUT /api/openstack-networks/{uuid}/

• Consumes: [u’application/json’]

Parameters
Name Position Description Type
uuid path string
data body

Responses

200 -

DELETE /api/openstack-networks/{uuid}/

Parameters
Name Position Description Type
uuid path string

Responses

204 -

PATCH /api/openstack-networks/{uuid}/

• Consumes: [u’application/json’]

Parameters

74 Chapter 5. API

SUNFISH Platform Documentation Documentation, Release 0.9

Name Position Description Type
uuid path string
data body

Responses

200 -

GET /api/openstack-networks/{uuid}/

Parameters
Name Position Description Type
uuid path string

Responses

200 -

POST /api/openstacktenant-instances/{uuid}/backup/

OpenStack instance permissions

• Description: OpenStack instance permissions ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

- Staff members can list all available VM instances in any service. - Customer owners can list all VM instances in
all the services that belong to any of the customers they own. - Project administrators can list all VM instances,
create new instances and start/stop/restart instances in all the services that are connected to any of the projects
they are administrators in. - Project managers can list all VM instances in all the services that are connected to
any of the projects they are managers in.

• Consumes: [u’application/json’]

Parameters
Name Position Description Type
uuid path string
data body

Responses

201 -

PUT /api/users/{uuid}/

• Consumes: [u’application/json’]

Parameters
Name Position Description Type
uuid path string
data body

Responses

200 -

DELETE /api/users/{uuid}/

5.6. SUNFISH Intelligent Workload Manager (IWM) API 75

SUNFISH Platform Documentation Documentation, Release 0.9

Parameters
Name Position Description Type
uuid path string

Responses

204 -

PATCH /api/users/{uuid}/

• Consumes: [u’application/json’]

Parameters
Name Position Description Type
uuid path string
data body

Responses

200 -

GET /api/users/{uuid}/

User fields can be updated by account owner or user with staff privilege (is_staff=True).

• Description: User fields can be updated by account owner or user with staff privilege (is_staff=True). Following
user fields can be updated:

- organization (deprecated, use ‘organization plugin <http://nodeconductor-
organization.readthedocs.org/en/stable/>‘_ instead) - full_name - native_name - job_title - phone_number
- email

Can be done by **PUT**ing a new data to the user URI, i.e. */api/users/<UUID>/* by staff user or account
owner. Valid request example (token is user specific):

.. code-block:: http

PUT /api/users/e0c058d06864441fb4f1c40dee5dd4fd/ HTTP/1.1 Content-Type: application/json Accept: ap-
plication/json Authorization: Token c84d653b9ec92c6cbac41c706593e66f567a7fa4 Host: example.com

{ “email”: “example@example.com”, “organization”: “Bells organization”, }

Parameters
Name Position Description Type
uuid path string

Responses

200 -

POST /api/openstack-floating-ips/{uuid}/pull/

Parameters
Name Position Description Type
uuid path string

Responses

76 Chapter 5. API

SUNFISH Platform Documentation Documentation, Release 0.9

201 -

POST /api/openstack-service-project-link/

• Consumes: [u’application/json’]

Parameters
Name Position Description Type
data body

Responses

201 -

GET /api/openstack-service-project-link/

In order to be able to provision OpenStack resources, it must first be linked to a project. To do that,

• Description: In order to be able to provision OpenStack resources, it must first be linked to a project. To do
that, **POST** a connection between project and a service to */api/openstack-service-project-link/* as stuff
user or customer owner.

Example of a request:

.. code-block:: http

POST /api/openstack-service-project-link/ HTTP/1.1 Content-Type: application/json Accept: application/json
Authorization: Token c84d653b9ec92c6cbac41c706593e66f567a7fa4 Host: example.com

{ “project”: “http://example.com/api/projects/e5f973af2eb14d2d8c38d62bcbaccb33/”, “service”:
“http://example.com/api/openstack/b0e8a4cbd47c4f9ca01642b7ec033db4/” }

To remove a link, issue DELETE to URL of the corresponding connection as stuff user or customer owner.

Parameters
Name Position Description Type
page query string
page_size query string
project query string
service query string
service_uuid query string
customer_uuid query string
project_uuid query string

Responses

200 -

PUT /api/hooks-web/{uuid}/

• Consumes: [u’application/json’]

Parameters
Name Position Description Type
uuid path string
data body

5.6. SUNFISH Intelligent Workload Manager (IWM) API 77

SUNFISH Platform Documentation Documentation, Release 0.9

Responses

200 -

DELETE /api/hooks-web/{uuid}/

Parameters
Name Position Description Type
uuid path string

Responses

204 -

PATCH /api/hooks-web/{uuid}/

• Consumes: [u’application/json’]

Parameters
Name Position Description Type
uuid path string
data body

Responses

200 -

GET /api/hooks-web/{uuid}/

Parameters
Name Position Description Type
uuid path string

Responses

200 -

GET /api/openstacktenant/{uuid}/managed_resources/

Parameters
Name Position Description Type
uuid path string

Responses

200 -

POST /api/openstack-packages/extend/

• Consumes: [u’application/json’]

78 Chapter 5. API

SUNFISH Platform Documentation Documentation, Release 0.9

Parameters
Name Position Description Type
data body

Responses

201 -

POST /api/openstacktenant-service-project-link/

• Consumes: [u’application/json’]

Parameters
Name Position Description Type
data body

Responses

201 -

GET /api/openstacktenant-service-project-link/

To get a list of connections between a project and an service, run **GET** against service_project_link_url

• Description: To get a list of connections between a project and an service, run **GET** against ser-
vice_project_link_url as authenticated user. Note that a user can only see connections of a project where a
user has a role.

If service has ‘available_for_all‘ flag, project-service connections are created automatically. Otherwise, in order
to be able to provision resources, service must first be linked to a project. To do that, **POST** a connection
between project and a service to service_project_link_url as stuff user or customer owner.

Parameters
Name Position Description Type
page query string
page_size query string
project query string
service query string
service_uuid query string
customer_uuid query string
project_uuid query string

Responses

200 -

GET /api/services/

Filter services by type

• Description: Filter services by type ^^^^^^^^^^^^^^^^^^^^^^^

It is possible to filter services by their types. Example:

/api/services/?service_type=DigitalOcean&service_type=OpenStack

5.6. SUNFISH Intelligent Workload Manager (IWM) API 79

SUNFISH Platform Documentation Documentation, Release 0.9

Parameters
Name Position Description Type
page query string
page_size query string

Responses

200 -

POST /api/openstack-security-groups/{uuid}/set_rules/

WARNING! Auto-generated HTML form is wrong for this endpoint. List should be defined as input.

• Description: WARNING! Auto-generated HTML form is wrong for this endpoint. List should be defined as
input.

Example: [{ “protocol”: “tcp”, “from_port”: 1, “to_port”: 10, “cidr”: “10.1.1.0/24” }]

• Consumes: [u’application/json’]

Parameters
Name Position Description Type
uuid path string
data body

Responses

201 -

POST /api/openstacktenant-instances/{uuid}/start/

OpenStack instance permissions

• Description: OpenStack instance permissions ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

- Staff members can list all available VM instances in any service. - Customer owners can list all VM instances in
all the services that belong to any of the customers they own. - Project administrators can list all VM instances,
create new instances and start/stop/restart instances in all the services that are connected to any of the projects
they are administrators in. - Project managers can list all VM instances in all the services that are connected to
any of the projects they are managers in.

• Consumes: [u’application/json’]

Parameters
Name Position Description Type
uuid path string
data body

Responses

201 -

POST /api/openstacktenant-volumes/{uuid}/detach/

Detach instance from volume

• Description: Detach instance from volume

80 Chapter 5. API

SUNFISH Platform Documentation Documentation, Release 0.9

• Consumes: [u’application/json’]

Parameters
Name Position Description Type
uuid path string
data body

Responses

201 -

POST /api/openstack-tenants/{uuid}/pull_security_groups/

• Consumes: [u’application/json’]

Parameters
Name Position Description Type
uuid path string
data body

Responses

201 -

POST /api/openstack-networks/{uuid}/create_subnet/

• Consumes: [u’application/json’]

Parameters
Name Position Description Type
uuid path string
data body

Responses

201 -

PUT /api/service-settings/{uuid}/

To update service settings, issue a **PUT** or **PATCH** to */api/service-settings/<uuid>/* as a customer owner.

• Description: To update service settings, issue a **PUT** or **PATCH** to */api/service-settings/<uuid>/* as
a customer owner. You are allowed to change name and credentials only.

Example of a request:

.. code-block:: http

PATCH /api/service-settings/9079705c17d64e6aa0af2e619b0e0702/ HTTP/1.1 Content-Type: application/json
Accept: application/json Authorization: Token c84d653b9ec92c6cbac41c706593e66f567a7fa4 Host: exam-
ple.com

{ “username”: “admin”, “password”: “new_secret” }

• Consumes: [u’application/json’]

5.6. SUNFISH Intelligent Workload Manager (IWM) API 81

SUNFISH Platform Documentation Documentation, Release 0.9

Parameters
Name Position Description Type
uuid path string
data body

Responses

200 -

PATCH /api/service-settings/{uuid}/

• Consumes: [u’application/json’]

Parameters
Name Position Description Type
uuid path string
data body

Responses

200 -

GET /api/service-settings/{uuid}/

Parameters
Name Position Description Type
uuid path string

Responses

200 -

POST /api/openstack/{uuid}/link/

To get a list of resources available for import, run **GET** against */<service_endpoint>/link/*

• Description: To get a list of resources available for import, run **GET** against */<service_endpoint>/link/*
as an authenticated user. Optionally project_uuid parameter can be supplied for services requiring it like Open-
Stack.

To import (link with NodeConductor) resource issue **POST** against the same endpoint with resource id.

.. code-block:: http

POST /api/openstack/08039f01c9794efc912f1689f4530cf0/link/ HTTP/1.1 Content-Type: application/json Ac-
cept: application/json Authorization: Token c84d653b9ec92c6cbac41c706593e66f567a7fa4 Host: exam-
ple.com

{ “backend_id”: “bd5ec24d-9164-440b-a9f2-1b3c807c5df3”, “project”:
“http://example.com/api/projects/e5f973af2eb14d2d8c38d62bcbaccb33/” }

• Consumes: [u’application/json’]

Parameters

82 Chapter 5. API

SUNFISH Platform Documentation Documentation, Release 0.9

Name Position Description Type
uuid path string
data body

Responses

201 -

GET /api/openstack/{uuid}/link/

To get a list of resources available for import, run **GET** against */<service_endpoint>/link/*

• Description: To get a list of resources available for import, run **GET** against */<service_endpoint>/link/*
as an authenticated user. Optionally project_uuid parameter can be supplied for services requiring it like Open-
Stack.

To import (link with NodeConductor) resource issue **POST** against the same endpoint with resource id.

.. code-block:: http

POST /api/openstack/08039f01c9794efc912f1689f4530cf0/link/ HTTP/1.1 Content-Type: application/json Ac-
cept: application/json Authorization: Token c84d653b9ec92c6cbac41c706593e66f567a7fa4 Host: exam-
ple.com

{ “backend_id”: “bd5ec24d-9164-440b-a9f2-1b3c807c5df3”, “project”:
“http://example.com/api/projects/e5f973af2eb14d2d8c38d62bcbaccb33/” }

Parameters
Name Position Description Type
uuid path string

Responses

200 -

PUT /api/openstack-ip-mappings/{uuid}/

• Consumes: [u’application/json’]

Parameters
Name Position Description Type
uuid path string
data body

Responses

200 -

DELETE /api/openstack-ip-mappings/{uuid}/

Parameters
Name Position Description Type
uuid path string

Responses

5.6. SUNFISH Intelligent Workload Manager (IWM) API 83

SUNFISH Platform Documentation Documentation, Release 0.9

204 -

PATCH /api/openstack-ip-mappings/{uuid}/

• Consumes: [u’application/json’]

Parameters
Name Position Description Type
uuid path string
data body

Responses

200 -

GET /api/openstack-ip-mappings/{uuid}/

Parameters
Name Position Description Type
uuid path string

Responses

200 -

POST /api/openstack-tenants/{uuid}/set_quotas/

A quota can be set for a particular tenant. Only staff users can do that.

• Description: A quota can be set for a particular tenant. Only staff users can do that. In order to set quota
submit **POST** request to */api/openstack-tenants/<uuid>/set_quotas/*. The quota values are propagated to
the backend.

The following quotas are supported. All values are expected to be integers:

- instances - maximal number of created instances. - ram - maximal size of ram for allocation. In MiB_.
- storage - maximal size of storage for allocation. In MiB_. - vcpu - maximal number of virtual cores for
allocation. - security_group_count - maximal number of created security groups. - security_group_rule_count -
maximal number of created security groups rules. - volumes - maximal number of created volumes. - snapshots
- maximal number of created snapshots.

It is possible to update quotas by one or by submitting all the fields in one request. NodeConductor will at-
tempt to update the provided quotas. Please note, that if provided quotas are conflicting with the backend (e.g.
requested number of instances is below of the already existing ones), some quotas might not be applied.

.. _MiB: http://en.wikipedia.org/wiki/Mebibyte .. _settings: http://nodeconductor.readthedocs.org/en/stable/guide/intro.html#id1

Example of a valid request (token is user specific):

.. code-block:: http

POST /api/openstack-tenants/c84d653b9ec92c6cbac41c706593e66f567a7fa4/set_quotas/ HTTP/1.1 Content-
Type: application/json Accept: application/json Host: example.com

{ “instances”: 30, “ram”: 100000, “storage”: 1000000, “vcpu”: 30, “security_group_count”: 100, “secu-
rity_group_rule_count”: 100, “volumes”: 10, “snapshots”: 20 }

84 Chapter 5. API

SUNFISH Platform Documentation Documentation, Release 0.9

Response code of a successful request is **202 ACCEPTED**. In case tenant is in a non-stable status, the
response would be **409 CONFLICT**. In this case REST client is advised to repeat the request after some
time. On successful completion the task will synchronize quotas with the backend.

• Consumes: [u’application/json’]

Parameters
Name Position Description Type
uuid path string
data body

Responses

201 -

POST /api/openstack/{uuid}/unlink/

Unlink all related resources, service project link and service itself.

• Description: Unlink all related resources, service project link and service itself.

• Consumes: [u’application/json’]

Parameters
Name Position Description Type
uuid path string
data body

Responses

201 -

PUT /api/customers/{uuid}/

• Consumes: [u’application/json’]

Parameters
Name Position Description Type
uuid path string
data body

Responses

200 -

DELETE /api/customers/{uuid}/

Deletion of a customer is done through sending a **DELETE** request to the customer instance URI. Please note,

• Description: Deletion of a customer is done through sending a **DELETE** request to the customer instance
URI. Please note, that if a customer has connected projects, deletion request will fail with 409 response code.

Valid request example (token is user specific):

.. code-block:: http

DELETE /api/customers/6c9b01c251c24174a6691a1f894fae31/ HTTP/1.1 Authorization: Token
c84d653b9ec92c6cbac41c706593e66f567a7fa4 Host: example.com

5.6. SUNFISH Intelligent Workload Manager (IWM) API 85

SUNFISH Platform Documentation Documentation, Release 0.9

Parameters
Name Position Description Type
uuid path string

Responses

204 -

PATCH /api/customers/{uuid}/

• Consumes: [u’application/json’]

Parameters
Name Position Description Type
uuid path string
data body

Responses

200 -

GET /api/customers/{uuid}/

Optional ‘field‘ query parameter (can be list) allows to limit what fields are returned.

• Description: Optional ‘field‘ query parameter (can be list) allows to limit what fields are returned. For example,
given request /api/customers/<uuid>/?field=uuid&field=name you get response like this:

.. code-block:: javascript

{ “uuid”: “90bcfe38b0124c9bbdadd617b5d739f5”, “name”: “Ministry of Bells” }

Parameters
Name Position Description Type
uuid path string

Responses

200 -

POST /api/customers/

A new customer can only be created by users with staff privilege (is_staff=True).

• Description: A new customer can only be created by users with staff privilege (is_staff=True). Example of a
valid request:

.. code-block:: http

POST /api/customers/ HTTP/1.1 Content-Type: application/json Accept: application/json Authorization: Token
c84d653b9ec92c6cbac41c706593e66f567a7fa4 Host: example.com

{ “name”: “Customer A”, “native_name”: “Customer A”, “abbreviation”: “CA”, “contact_details”: “Luhamaa
28, 10128 Tallinn”, }

• Consumes: [u’application/json’]

86 Chapter 5. API

SUNFISH Platform Documentation Documentation, Release 0.9

Parameters
Name Position Description Type
data body

Responses

201 -

GET /api/customers/

To get a list of customers, run GET against */api/customers/* as authenticated user. Note that a user can

• Description: To get a list of customers, run GET against */api/customers/* as authenticated user. Note that a
user can only see connected customers:

- customers that the user owns - customers that have a project where user has a role

Staff also can filter customers by user UUID, for example /api/customers/?user_uuid=<UUID>

Parameters
Name Position Description Type
page query string
page_size query string
name query string
abbreviation query string
contact_details query string
native_name query string
registration_code query string
o query string

Responses

200 -

POST /api/openstacktenant-snapshots/{uuid}/pull/

• Consumes: [u’application/json’]

Parameters
Name Position Description Type
uuid path string
data body

Responses

201 -

PUT /api/customers/{uuid}/image/

• Consumes: [u’application/json’]

Parameters
Name Position Description Type
uuid path string
data body

5.6. SUNFISH Intelligent Workload Manager (IWM) API 87

SUNFISH Platform Documentation Documentation, Release 0.9

Responses

200 -

DELETE /api/customers/{uuid}/image/

Parameters
Name Position Description Type
uuid path string

Responses

204 -

PATCH /api/customers/{uuid}/image/

• Consumes: [u’application/json’]

Parameters
Name Position Description Type
uuid path string
data body

Responses

200 -

GET /api/customers/{uuid}/image/

Parameters
Name Position Description Type
uuid path string
page query string
page_size query string

Responses

200 -

GET /api/events/count/

To get a count of events - run **GET** against */api/events/count/* as authenticated user.

• Description: To get a count of events - run **GET** against */api/events/count/* as authenticated user. End-
point support same filters as events list.

Response example:

.. code-block:: javascript

{“count”: 12321}

Parameters

Name Position Description Type

88 Chapter 5. API

SUNFISH Platform Documentation Documentation, Release 0.9

Responses

200 -

POST /api/openstacktenant-volumes/{uuid}/snapshot/

Create snapshot from volume

• Description: Create snapshot from volume

• Consumes: [u’application/json’]

Parameters
Name Position Description Type
uuid path string
data body

Responses

201 -

POST /api/openstack-security-groups/{uuid}/pull/

• Consumes: [u’application/json’]

Parameters
Name Position Description Type
uuid path string
data body

Responses

201 -

POST /api/openstack-subnets/{uuid}/pull/

• Consumes: [u’application/json’]

Parameters
Name Position Description Type
uuid path string
data body

Responses

201 -

GET /api/openstacktenant-images/

Parameters

5.6. SUNFISH Intelligent Workload Manager (IWM) API 89

SUNFISH Platform Documentation Documentation, Release 0.9

Name Position Description Type
page query string
page_size query string
name query string
settings_uuid query string
settings query string

Responses

200 -

PUT /api/openstacktenant-volumes/{uuid}/

• Consumes: [u’application/json’]

Parameters
Name Position Description Type
uuid path string
data body

Responses

200 -

DELETE /api/openstacktenant-volumes/{uuid}/

Parameters
Name Position Description Type
uuid path string

Responses

204 -

PATCH /api/openstacktenant-volumes/{uuid}/

• Consumes: [u’application/json’]

Parameters
Name Position Description Type
uuid path string
data body

Responses

200 -

GET /api/openstacktenant-volumes/{uuid}/

Parameters
Name Position Description Type
uuid path string

Responses

90 Chapter 5. API

SUNFISH Platform Documentation Documentation, Release 0.9

200 -

POST /api/openstacktenant/

• Consumes: [u’application/json’]

Parameters
Name Position Description Type
data body

Responses

201 -

GET /api/openstacktenant/

To list all services without regard to its type, run **GET** against */api/services/* as an authenticated user.

• Description: To list all services without regard to its type, run **GET** against */api/services/* as an authen-
ticated user.

To list services of specific type issue **GET** to specific endpoint from a list above as a customer owner.
Individual endpoint used for every service type.

To create a service, issue a **POST** to specific endpoint from a list above as a customer owner. Individual
endpoint used for every service type.

You can create service based on shared service settings. Example:

.. code-block:: http

POST /api/digitalocean/ HTTP/1.1 Content-Type: application/json Accept: application/json Authorization: To-
ken c84d653b9ec92c6cbac41c706593e66f567a7fa4 Host: example.com

{ “name”: “Common DigitalOcean”, “customer”: “http://example.com/api/customers/1040561ca9e046d2b74268600c7e1105/”,
“settings”: “http://example.com/api/service-settings/93ba615d6111466ebe3f792669059cb4/” }

Or provide your own credentials. Example:

.. code-block:: http

POST /api/oracle/ HTTP/1.1 Content-Type: application/json Accept: application/json Authorization: Token
c84d653b9ec92c6cbac41c706593e66f567a7fa4 Host: example.com

{ “name”: “My Oracle”, “customer”: “http://example.com/api/customers/1040561ca9e046d2b74268600c7e1105/”,
“backend_url”: “https://oracle.example.com:7802/em”, “username”: “admin”, “password”: “secret” }

Parameters

5.6. SUNFISH Intelligent Workload Manager (IWM) API 91

SUNFISH Platform Documentation Documentation, Release 0.9

Name Position Description Type
page query string
page_size query string
name query string
project_uuid query string
customer query string
project query string
settings query string
shared query string
type query string
tag query string
rtag query string

Responses

200 -

GET /api/openstack/{uuid}/managed_resources/

Parameters
Name Position Description Type
uuid path string

Responses

200 -

GET /api/openstack-images/

Parameters
Name Position Description Type
page query string
page_size query string
name query string
settings_uuid query string
settings query string

Responses

200 -

PUT /api/openstack-security-groups/{uuid}/

• Consumes: [u’application/json’]

Parameters
Name Position Description Type
uuid path string
data body

Responses

200 -

92 Chapter 5. API

SUNFISH Platform Documentation Documentation, Release 0.9

DELETE /api/openstack-security-groups/{uuid}/

Parameters
Name Position Description Type
uuid path string

Responses

204 -

PATCH /api/openstack-security-groups/{uuid}/

• Consumes: [u’application/json’]

Parameters
Name Position Description Type
uuid path string
data body

Responses

200 -

GET /api/openstack-security-groups/{uuid}/

Parameters
Name Position Description Type
uuid path string

Responses

200 -

GET /api/openstacktenant-images/{uuid}/

Parameters
Name Position Description Type
uuid path string

Responses

200 -

POST /api/customer-permissions/

- Customers are connected to users through roles, whereas user may have role “customer owner”.

• Description: - Customers are connected to users through roles, whereas user may have role “customer owner”.
- Each customer may have multiple owners, and each user may own multiple customers. - Staff members can list
all available customers and create new customers. - Customer owners can list all customers they own. Customer
owners can also create new customers. - Project administrators can list all the customers that own any of the
projects they are administrators in. - Project managers can list all the customers that own any of the projects
they are managers in.

5.6. SUNFISH Intelligent Workload Manager (IWM) API 93

SUNFISH Platform Documentation Documentation, Release 0.9

• Consumes: [u’application/json’]

Parameters
Name Position Description Type
data body

Responses

201 -

GET /api/customer-permissions/

Each customer is associated with a group of users that represent customer owners. The link is maintained

• Description: Each customer is associated with a group of users that represent customer owners. The link is
maintained through **api/customer-permissions/** endpoint.

To list all visible links, run a **GET** query against a list. Response will contain a list of customer owners and
their brief data.

To add a new user to the customer, **POST** a new relationship to **customer-permissions** endpoint:

.. code-block:: http

POST /api/customer-permissions/ HTTP/1.1 Accept: application/json Authorization: Token
95a688962bf68678fd4c8cec4d138ddd9493c93b Host: example.com

{ “customer”: “http://example.com/api/customers/6c9b01c251c24174a6691a1f894fae31/”, “role”: “owner”,
“user”: “http://example.com/api/users/82cec6c8e0484e0ab1429412fe4194b7/” }

Parameters
Name Position Description Type
page query string
page_size query string
role query string
user query string
user_url query string
username query string
full_name query string
native_name query string
o query string
customer query string
customer_url query string

Responses

200 -

PUT /api/openstack-tenants/{uuid}/

• Consumes: [u’application/json’]

Parameters
Name Position Description Type
uuid path string
data body

94 Chapter 5. API

SUNFISH Platform Documentation Documentation, Release 0.9

Responses

200 -

DELETE /api/openstack-tenants/{uuid}/

Parameters
Name Position Description Type
uuid path string

Responses

204 -

PATCH /api/openstack-tenants/{uuid}/

• Consumes: [u’application/json’]

Parameters
Name Position Description Type
uuid path string
data body

Responses

200 -

GET /api/openstack-tenants/{uuid}/

Parameters
Name Position Description Type
uuid path string

Responses

200 -

5.6. SUNFISH Intelligent Workload Manager (IWM) API 95

SUNFISH Platform Documentation Documentation, Release 0.9

96 Chapter 5. API

CHAPTER 6

Registry Interface

6.1 Instructions for Registry Interface Deployment and Development

The Registry Interface is a key component of the SUNFISH architecture. It has two purposes. On one hand, it interacts
with the fabric blockchain. On the other hand, it provides web interfaces for other SUNFISH components to enable
the interactions between those components and the blockchain.

It has two components RI and RI Infrastructure which are presented below.

6.1.1 RI

RI is responsible for handling requests from other SUNFISH components in all tenants, except in an infrastructure
tenant. Next, two instruction sets are presented. One describes how to deploy deploy this component. The other
presents the development paradigm to aid other developers working in future.

Deployment Guide

RI can be deployed by following the steps presented below. It has been integrated with the fabric blockchain by
utilising the docker container provided by the fabric project. However, thanks to its modular architecture, other
blockchain can be easily integrated in future. Follow the Development Guide below to understand how it can be done.

1. Prepare the hosting machine by following the instructions at: http://hyperledger-fabric.readthedocs.io/en/latest/
prereqs.html

2. Setup your GOPATH environment variable as required.

3. Clone the Registry repository using the following command:

git clone https://github.com/sunfish-prj/Registry.git

4. cd into Registry/chaincode directory.

5. Copy the “github.com” directory from the Registry/chaincode directory to $GOPATH/src/

97

http://hyperledger-fabric.readthedocs.io/en/latest/prereqs.html
http://hyperledger-fabric.readthedocs.io/en/latest/prereqs.html

SUNFISH Platform Documentation Documentation, Release 0.9

6. Clone the Registry Interface repository using the following command:

git clone https://github.com/sunfish-prj/Registry-Interface.git

7. cd into Registry-Interface/RI directory.

8. Issue the following command to make shell scripts executable:

chmod a+x channel_test.sh deployAll.sh stop.sh

9. Issue the following command to install the required node packages:

npm install

10. Update the goPath config field in Registry-Interface/RI/config.json with the go path directory of the host (as
printed by the :bash:‘echo $GOPATH‘ command)

11. Update the dockerIP config field in Registry-Interface/RI/config.ini with the IP address of the docker interface
(for ubuntu, use the ifconfig command to get the IP address of the docker interface for the host machine)

12. Within the Registry-Interface/RI directory, issue the following command in a terminal. This creates the fabric
blockchain and initiates and deploys the required entities for the particular blockchain.

docker-compose -f dockerCompose.yml up -d

13. In another terminal, use the command docker exec -it cli bash to connect to the cli container and
then issue: more results.txt. Repeat more results.txt until the following outputs are printed.
This ensures that all peers have joined the created channel.

SUCCESSFUL CHANNEL CREATION
SUCCESSFUL JOIN CHANNEL on PEER0
SUCCESSFUL JOIN CHANNEL on PEER1
SUCCESSFUL JOIN CHANNEL on PEER2

14. In different terminals, the following commands can be used to trace the logs of the orderer and peer0 (or
peer1/peer2 by changing the respective value) respectively :

docker logs -f orderer

docker logs -f peer0

15. In another terminal, within the Registry-Interface/RI directory, the following command needs to be issued to
deploy the required smart contracts (chaincode):

./deployAll.sh

16. Wait until the following output is printed. This confirms that the smart contract has been successfully deployed
in the fabric blockchain. This output will be repeated all each chaincode.

The chaincode transaction has been successfully committed

17. In the same terminal (or in a different terminal), within the Registry-Interface/RI directory, the following com-
mand needs to be issued. This starts the node server for the registry interface, listening at port 8075.

node ri.js

18. Wait until the server started output is printed in the terminal. This indicates that the node server for RI has been
successfully started.

98 Chapter 6. Registry Interface

SUNFISH Platform Documentation Documentation, Release 0.9

19. Test the interface by registering, retrieving, updating and deleting some dummy data, use the test cases from
the from the testCases file. For these test cases, docker_IP needs to be updated accordingly. The in/index field
needs to be updated accordingly for reading from the interface.

20. To get the output of the smart-contract, the following command can be issued after a single data has been
registered/stored. Here, ”...” represents the corresponding container name.

docker logs -f peer0-peer0...

21. Once finished, issue the following command to stop and remove the fabric containers:

./stop.sh

22. Repeat the steps from step 10 to deploy the smart contracts and utilise the ri.

23. To enable the interactions between the RI and FRM/FAM, a separate instance of RI for any infrastructure tenant
is required. This needs to be deployed following the instructions provided below.

Development Guide

Ri has been developed using node.js. The flow control in the registry interface is as follows:

SUNFISH Component ====> ri.js --> *API.js --> hyperledger/hyperledger*.js ====>
→˓fabric ====> SUNFISH Component

The ri.js is the entry point of the registry interface. There are different hyperledger*.js files inside the hyperledger;
each of which is responsible for interacting with a particular smart-contract. There are also different API.js files which
are responsible for forwarding each request to the appropriate hyperledger.js file. Currently, these *API.js files are
configured to hyperledger. However, if needed, this configuration can be changed in the config.ini file and also by
developing required *.js files which interact with the other blockchain.

A SUNFISH component submits a request following the SUNFISH RI specification. Based on the request path, the
request is forwarded internally to the appropriate API.js file. Then this file forwards the request to the corresponding
hyperledger.js file where the request is handled.

6.1.2 RI Infrastructure

RI Infrastructure is responsible for handling requests from other SUNFISH components in an infrastructure tenant.
Next, two instruction sets are presented. One describes how to deploy deploy this component. The other presents the
development paradigm to aid other developers working in future.

Deployment Guide

1. If not already cloned, clone the Registry Interface project using the following command:

git clone https://github.com/sunfish-prj/Registry-Interface.git

2. cd into Registry-Interface/INF_RI directory.

3. Configure the IP address of the hosting machine by changing the frmIP parameter in the config.ini file.

4. In a terminal, within the Registry-Interface/INF_RI directory, the following command needs to be issued. This
starts the node server for the registry interface for the infrastructure tenant, listening at port 8076.

node infRI.js

6.1. Instructions for Registry Interface Deployment and Development 99

SUNFISH Platform Documentation Documentation, Release 0.9

5. Wait until the server started output is printed in the terminal. This indicates that the node server for Infrastructure
RI has been successfully started.

Development Guide

This follows the same pattern described in the previous section.

100 Chapter 6. Registry Interface

CHAPTER 7

Registry

This is a page for the Registry Architecture.

7.1 Instructions for deploying chaincode

The current iteration of SUNFISH Registry leverages the hyperledger fabric blockchain and the chaincode represents
the smart-contract which are executed on the fabric blockchain.

Currently, the chaincode has been written in Go lang and is hosted at: https://github.com/sunfish-prj/Registry

Within the chaincode/github.com directory of the repository, there are several directories. In each directory, there is
a chaincode for a particular functionality of the RI. For example, the chaincode/github.com/alert directory contains a
chainconde called alert.go which is used by corresponding RI endpoint to store and retrive an alert in the blockchain
and so on. These directories also contain a file called Dockerfile which is used to deploy any particular chaincode in
the corresponding container.

7.1.1 Deployment Guide

Follow steps are required to deploy any chaincode.

1. Prepare the hosting machine by following the instructions at: http://hyperledger-fabric.readthedocs.io/en/latest/
prereqs.html

2. Setup your GOPATH environment variable as required.

3. Clone the Registry repository using the following command:

git clone https://github.com/sunfish-prj/Registry.git

4. cd into Registry/chaincode directory.

5. Copy the github.com directory from the Registry/chaincode directory to $GOPATH/src/

101

https://github.com/sunfish-prj/Registry
http://hyperledger-fabric.readthedocs.io/en/latest/prereqs.html
http://hyperledger-fabric.readthedocs.io/en/latest/prereqs.html

SUNFISH Platform Documentation Documentation, Release 0.9

6. Once copied, no other additional step is required. The copied chaincode will be automatically deployed in the
container by the deployment script of the RI.

102 Chapter 7. Registry

CHAPTER 8

FRM

This is a page for the FRM.

8.1 Instructions for deploying FRM

FRM (Federated Runtime Monitoring) consists of two directories having two components: i) Proxy and ii) Chaincode
component. The development and deployment models for each of these components are discussed below.

8.1.1 Proxy

The proxy component represents the proxies that need to be attached to the DS components to enable the interception
of access requests and responses.

Development model

The proxy component has been developed as a servlet filter in order to be compatible with the DS servlets. It consists
of two Java source files, named ProxyFilter.java and CachedServletRequest.java under the sunfish.frm.proxy package.

The supplied pom.xml file contains the maven depency code snippet for the required libraries.

The supplied web.xml file, located under the src/main/webapp/WEB-INF directory, contains the servlet mapping for
the servlet filter.

A config.json file, located under the src/main/webapp/WEB-INF directory, contains configuration directives.

There are several additional libraries supplied in the src/main/webapp/WEB-INF/lib directory. which need to be
properly added into the java path during the deployment.

Deployment guide

The following steps are required to deploy and/or integrate the proxy with each DS component.

103

SUNFISH Platform Documentation Documentation, Release 0.9

1. Setup the configuration directives: 1.1 hostingID: denotes the DS component with which the proxy is being
integrated. Currently, it takes the value of either PDP or PEP. Other values can be attached, however, the
ProxyFilter.java source needs to be updated accordingly. 1.2 loggerID: the identifier of the hosting entity.

2. Add the dependency code snippet from the pom.xml file of the proxy to the pom.xml file of the corresponding
DS component.

3. Add the code servlet mapping code snippet from the web.xml of the proxy to the web.xml file of the correspond-
ing DS component.

4. Add the additional libraries from the src/main/webapp/WEB-INF/lib directory to the java path during the de-
ployment.

TODO: For the integration, it will also require to update the doFilter method of ProxyFilter.java file so that it can
capture the supplied parameters according to the APIs of the DS component and pass it to the corresponding API of
the RI.

8.1.2 Chaincode

The chaincode components exposes the endpoints for the PVE (Policy Violation Engine) and the agent. The PVE
is an integrated component of the FRM used to analyse the access logs. The agent endpoint is used by the FSA to
forward alerts to the RI.

Development model

The current iteration of the chaincode component of FRM leverages the hyperledger fabric blockchain and the chain-
code represents the smart-contract which are executed on the fabric blockchain.

This component has been developed using node.js. The flow control in the registry interface is as follows:

SUNFISH Component ====> frm.js --> *API.js --> hyperledger/hyperledger*.js ====>
→˓fabric ====> SUNFISH Component

The frm.js is the entry point of the chaincode component. There are different hyperledger*.js files inside the hyper-
ledger directory; each of which is responsible for interacting with a particular smart-contract. There are also different
API.js files which are responsible for forwarding each request to the appropriate hyperledger.js file. Currently, these
*API.js files are configured to hyperledger. However, if needed, this configuration can be changed in the config.ini file
and also by developing required *.js files which interact with the other blockchain.

A SUNFISH component submits a request following the SUNFISH RI specification. Based on the request path, the
request is forwarded internally to the appropriate API.js file. Then this file forwards the request to the corresponding
hyperledger.js file where the request is handled.

Deployment guide

Follow steps are required to deploy any chaincode.

1. Prepare the hosting machine by following the instructions at: http://hyperledger-fabric.readthedocs.io/en/latest/
prereqs.html

2. Setup your GOPATH environment variable as required.

3. Clone the Registry repository using the following command:

https://github.com/sunfish-prj/Federation-Monitoring.git

4. cd into Federation-Monitoring/chainComponent directory.

104 Chapter 8. FRM

http://hyperledger-fabric.readthedocs.io/en/latest/prereqs.html
http://hyperledger-fabric.readthedocs.io/en/latest/prereqs.html

SUNFISH Platform Documentation Documentation, Release 0.9

3. Configure the IP address of the docker container and the id of the PVE in the config.ini file.

4. In a terminal, within the Federation-Monitoring/chainComponent directory, the following command needs to be
issued. This starts the node server for the FRM, listening at port 8077.

node frm.js

5. Wait until the server started output is printed in the terminal. This indicates that the node server for Infrastructure
RI has been successfully started.

8.1. Instructions for deploying FRM 105

SUNFISH Platform Documentation Documentation, Release 0.9

106 Chapter 8. FRM

CHAPTER 9

IWM

This is a page for Intelligent Workload Manager (IWM).

9.1 Overview of Intelligent Workload Manager

SUNFISH Federation provides automated services for joining and leaving the federation, as well as an interface to
the available Federation services for a Service Consumer with ability to request optimized service list of services
matching Consumer requirements better. A common aspect of all use cases is requirement to be able to retrieve
information about the Federation resources and optionally schedule execution of a workload on a particular service
provider. Within SUNFISH, a component responsible for delivering such functionality is called Intelligent Workload
Manager (IWM).

Optimization model applicable to the scenario of Service provisioning by Service Consumer is offering an improve-
ment over local scheduling while imposing as little as possible of additional overhead on the definition of the workload
requirements. Improvement means achieving a better outcome regarding user-defined parameters (e.g. cost) while pre-
serving the strict requirements for the job payload. The goal of the model is to offer an added value over local scope
of resources by finding and managing a globally optimal target for the Service Consumer’s planned workload.

Optimisation model is a logical component exposed to the user in form of an optional ordering and filtering capability
used during provider lookup request.

IWM is based on open-source Waldur cloud brokerage platform. The latter is extended to include more fine-grained
optimisation capability. The functionality developed within SUNFISH has been integrated with the upstream.

9.2 Screenshots

Screenshots below are taken from a demo deployment of IWM in a federation.

107

SUNFISH Platform Documentation Documentation, Release 0.9

Fig. 9.1: Login view of IWM frontend, white-labelled to a concrete federation.

Fig. 9.2: Adding federation service providers to IWM.

108 Chapter 9. IWM

SUNFISH Platform Documentation Documentation, Release 0.9

Fig. 9.3: Listing registered SUNFISH tenants within an IWM.

Fig. 9.4: Visual interface to optimisation API for finding the best option for a planned infrastructure.

Fig. 9.5: Results of the optimisation with 2 service providers in the federation.

9.2. Screenshots 109

SUNFISH Platform Documentation Documentation, Release 0.9

9.3 Instructions for deploying IWM

IWM functionality has been integrated into Waldur. As such, deployment of IWM is done in the same fashion as
upstream. Installation script is below. Deployment requirements are:

• CentOS 7 or other RHEL7-compliant operating system

• At least 8GB of RAM, preferably 2 cores or more.

yum clean all
yum -y update

Configure repositories
yum -y install epel-release
yum -y install https://download.postgresql.org/pub/repos/yum/9.5/redhat/rhel-7-x86_64/
→˓pgdg-centos95-9.5-2.noarch.rpm
yum -y install https://opennodecloud.com/centos/7/elastic-release.rpm
yum -y install https://opennodecloud.com/centos/7/waldur-release.rpm

Set up PostgreSQL
yum -y install postgresql95-server
/usr/pgsql-9.5/bin/postgresql95-setup initdb
systemctl start postgresql-9.5
systemctl enable postgresql-9.5

su - postgres -c "/usr/pgsql-9.5/bin/createdb -EUTF8 waldur"
su - postgres -c "/usr/pgsql-9.5/bin/createuser waldur"

Set up Redis
yum -y install redis
systemctl start redis
systemctl enable redis

Set up Elasticsearch
yum -y install elasticsearch java

systemctl start elasticsearch
systemctl enable elasticsearch

Set up Logstash
yum -y install logstash

cat > /etc/logstash/conf.d/waldur-events.json <<EOF
input {

tcp {
codec => json
port => 5959
type => "waldur-event"

}
}

filter {
if [type] == "waldur-event" {
json {

source => "message"
}

mutate {

110 Chapter 9. IWM

SUNFISH Platform Documentation Documentation, Release 0.9

remove_field => ["class", "file", "logger_name", "method", "path", "priority",
→˓"thread"]

}

grok {
match => { "host" => "%{IPORHOST:host}:%{POSINT}" }
overwrite => ["host"]

}
}

}

output {
elasticsearch { }

}
EOF

systemctl start logstash
systemctl enable logstash

Set up Waldur Core
yum -y install waldur-core

su - waldur -c "waldur migrate --noinput"

systemctl start waldur-uwsgi
systemctl enable waldur-uwsgi

systemctl start waldur-celery
systemctl enable waldur-celery

systemctl start waldur-celerybeat
systemctl enable waldur-celerybeat

su - waldur -c "waldur createstaffuser -u admin -p admin"

Set up Waldur MasterMind
yum -y install centos-release-openstack-pike
yum -y install waldur-mastermind

su - waldur -c "waldur migrate --noinput"

systemctl restart waldur-uwsgi
systemctl restart waldur-celery
systemctl restart waldur-celerybeat

Set up Waldur HomePort
yum -y install waldur-homeport

Set up Nginx
yum -y install nginx

systemctl start nginx
systemctl enable nginx

9.3. Instructions for deploying IWM 111

SUNFISH Platform Documentation Documentation, Release 0.9

112 Chapter 9. IWM

CHAPTER 10

Registry Interface

The Registry Interface (RI) is the logical component that manages the storing and retrieval operations directed to the
blockchain based registry.

The RI offers a set of APIs that the different components, if authorised, can invoke to store or retrieve data from
the blockchain-empowered registry. The specifications of the APIs can be found at: https://github.com/sunfish-prj/
SUNFISH-Platform-API

RI, thus, is a central component of the SUNFISH insfrastructure. Other respectice SUNFISH components need to
leverage the RI to store and update corresponding data by invoking the defined endpoints of the APIs.

113

https://github.com/sunfish-prj/SUNFISH-Platform-API
https://github.com/sunfish-prj/SUNFISH-Platform-API

SUNFISH Platform Documentation Documentation, Release 0.9

114 Chapter 10. Registry Interface

CHAPTER 11

Registry

Registy provides a blockchain-empowered storage and programming platform that is used to store and update relevant
data to/from the blockchain via the Registry Interface (RI). It consists of several chaincode (smart-contract) which are
programs executed within the blockchain platform. It consists of several chaincode with each one used for a specific
purpose.

115

	Federation-as-a-Service
	Operational Phases

	SUNFISH Platform in a nutshell
	Setting-up a SUNFISH Cloud Federation
	Data Security Enforcement Infrastructure

	SUNFISH Use Case Demonstrator
	API
	SUNFISH Policy Administration Point (PAP) API
	SUNFISH Policy Decision Point (PDP) API
	SUNFISH Policy Enforcement Point (PEP) API
	SUNFISH Policy Information Point (PIP) API
	SUNFISH Policy Retrieval Point (PRP) API
	SUNFISH Intelligent Workload Manager (IWM) API

	Registry Interface
	Instructions for Registry Interface Deployment and Development

	Registry
	Instructions for deploying chaincode

	FRM
	Instructions for deploying FRM

	IWM
	Overview of Intelligent Workload Manager
	Screenshots
	Instructions for deploying IWM

	Registry Interface
	Registry

